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In astronomy, interferometry of light collected by separate telescopes is often performed by physically

bringing the optical paths together in the form of Young’s double-slit experiment. Optical loss severely

limits the efficiency of this so-called direct detection method, motivating the fundamental question of

whether one can achieve a comparable performance using separate optical measurements at the two

telescopes before combining the measurement results. Using quantum mechanics and estimation theory,

here I show that any such spatially local measurement scheme, such as heterodyne detection, is

fundamentally inferior to coherently nonlocal measurements, such as direct detection, for estimating

the mutual coherence of bipartite thermal light when the average photon flux is low. This surprising result

reveals an overlooked signature of quantum nonlocality in a classic optics experiment.
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The basic goal of stellar interferometry is to retrieve
astronomical information from the mutual coherence be-
tween optical modes collected by telescopes [1–3]. The
imaging resolution increases with the distance between
the collected optical modes called the baseline, motivating
the development of long-baseline stellar interferometry
using light collected from a telescope array [2,3]. The
standard method of stellar interferometry in the optical
regime is called direct detection, which coherently com-
bines the optical paths in the form of the classic Young’s
double-slit experiment, but its efficiency suffers from de-
coherence in the form of accumulating optical loss along
the paths as the baseline is increased. To avoid optical loss,
an alternative method is to perform separate heterodyne
detection at the two telescopes, before combining the
measurement results via classical communication and
data processing [2,3]. In quantum information theory, di-
rect detection can be classified as a nonlocal measurement
scheme, which requires joint quantum operations on the
two optical modes, while heterodyne detection is a local
measurement scheme, which does not require quantum
coherence between the separate detectors [4,5]. Townes
has previously analyzed the quantum noises in direct and
heterodyne detection and concluded that direct detection
is superior at high optical frequencies and heterodyne
detection is superior at low frequencies [3,6]. Heterodyne
detection is, however, only one example of local measure-
ments, and it remains a fundamental and important ques-
tion whether any other local measurement can perform as
well as nonlocal measurements while not suffering from
decoherence.

The main purpose of this Letter is to prove that, in the
case of weak thermal light, any local measurement scheme
must be significantly inferior to a nonlocal one for the
estimation of the mutual coherence according to quantum

mechanics. This is a surprising result in quantum metrol-
ogy, since the disadvantage of local measurements does not
otherwise occur for coherent states at any strength, a well-
studied case in quantum metrology [7], strong thermal
light, in which case there is little difference between direct
and heterodyne detection [8], or even the single-photon
state assumed by Gottesman, Jennewein, and Croke in their
proposal of shared-entanglement stellar interferometry [9].
This quantum measurement nonlocality can be regarded as
a dual of Einstein-Podolsky-Rosen entanglement [4,10]:
Despite the fact that bipartite thermal light has a well-
defined classical description and possesses no quantum
entanglement, nonlocal quantum measurements are neces-
sary to extract the most information from the light. For
optical interferometry and imaging applications in general,
the result demonstrates the fundamental advantage of non-
local measurements for weak thermal light and motivates
the development of coherent optical measurement tech-
niques, such as integrated optical information processing
[2,11,12] and entanglement sharing [9].
Consider the estimation of first-order spatial coherence

(gð1Þ) between two distant optical modes. In quantum
optics, bipartite thermal light is described by the density
operator

� ¼
Z

d2�d2��ð�;�Þj�;�ih�;�j; (1)

where j�;�i is a coherent state with amplitudes � and� in
the two modes and �ð�;�Þ is the Sudarshan-Glauber
representation [1], given by

�ð�;�Þ ¼ 1

�2 det�
exp

�
�ð�� �� Þ��1 �

�

� ��
: (2)

� is the mutual coherence matrix:
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� � �aa �ab

�ba �bb

� �
¼ hayai hbyai

haybi hbybi
� �

; (3)

and a and b are annihilation operators of the optical modes.
The zero-mean Gaussian statistics are a standard assump-
tion for astronomical sources in theoretical optics [1,3].
The positive � function indicates that the two modes are
classically correlated only and possess no quantum entan-
glement [13].

Let hayai ¼ hbybi ¼ �=2 for simplicity. For an incom-
ing light with photon-flux spectral density Sð�Þ and a
relatively narrow detector bandwidth �� around a center
frequency �0, the filtered photon flux is Sð�0Þ��. Over the
duration of the effective temporal mode �t� 1=��, � ¼
Sð�0Þ���t� Sð�0Þ turns out to be independent of the
detector bandwidth and a function of the source and the
telescope efficiency only. Considering the case � � 1, as is
common for interferometry with high optical �0, the den-
sity operator can be approximated in the photon-number
basis as

� ¼ ð1� �Þj0; 0ih0; 0j þ �

2
½j0; 1ih0; 1j þ j1; 0ih1; 0j

þ g�j0; 1ih1; 0j þ gj1; 0ih0; 1j� þOð�2Þ; (4)

where I have defined �g=2 � �ab ¼ ��
ba and g � g1 þ ig2

as the complex degree of coherence with jgj � 1 [1]. In the
following, I neglect the smallOð�2Þ terms, assume that � is
known, and g1 and g2 are the unknown parameters to be
estimated. The assumption of a known � should be reason-
able, as other noninterferometric imaging methods can be
used to estimate the average photon flux and are usually
much less sensitive to noise [2]. Otherwise, � should also
be regarded as an unknown parameter to be estimated by
the interferometer, a complication outside the scope of
this Letter.

Any measurement in quantum mechanics can be mod-
eled by a positive operator-valued measure (POVM)
EðyÞ [4,14], which determines the probability of the ob-
servation y:

PðyjgÞ ¼ tr½EðyÞ��: (5)

For example, in the direct detection scheme [Fig. 1(a)], the
two optical modes are brought to interfere at a 50-50 beam
splitter and the photons at the two output ports are counted.
It can be shown by standard quantum optics calculations
[8] that the POVM Eðn;mÞ for photon counts n and m are

Eð0; 0Þ ¼ j0; 0ih0; 0j; (6)

Eð1; 0Þ ¼ 1
2ðj1; 0i þ e�i�j0; 1iÞðh1; 0j þ ei�h0; 1jÞ; (7)

Eð0; 1Þ ¼ 1
2ðj1; 0i � e�i�j0; 1iÞðh1; 0j � ei�h0; 1jÞ; (8)

where � is an adjustable phase shift on the b mode. The
observation probabilities become

Pð0; 0jgÞ ¼ 1� �; (9)

Pð1; 0jgÞ ¼ �

2
½1þ Reðge�i�Þ�; (10)

Pð0; 1jgÞ ¼ �

2
½1� Reðge�i�Þ�: (11)

To evaluate the parameter-estimation capability of a
measurement scheme, consider the Fisher-information ma-
trix, defined as [15]

F � X
y

1

PðyjgÞDðyjgÞ; (12)

DðyjgÞ �

�
@PðyjgÞ
@g1

�
2

@PðyjgÞ
@g1

@PðyjgÞ
@g2

@PðyjgÞ
@g2

@PðyjgÞ
@g1

�
@PðyjgÞ
@g2

�
2

0
BB@

1
CCA: (13)

The inverse of the Fisher-information matrix provides a
lower Cramér-Rao bound to the mean-square estimation
error covariance matrix � for any unbiased estimate in the
form of � � F�1. The eigenvalues of F, which must be
nonnegative as F � 0, hence quantify the amounts of
independent information obtainable from the measure-
ment. In a total observation time interval T over which
the model parameters can be approximated as
time constant, M� T=�t� T�� measurements can be

performed, and the total Fisher information is FðMÞ ¼
MF� T��F. In the limit of large M, the Cramér-Rao
bound is asymptotically achievable by maximum-
likelihood estimation. This makes the Fisher information
a rigorous metric for comparing the inherent capabilities of
different measurement schemes for parameter estimation.

FIG. 1 (color online). Schematics of (a) the direct detection
scheme, an example of nonlocal quantum measurement, and
(b) a local measurement scheme, which performs spatially
separate measurements and permits only classical communica-
tion and control between the two sites. Examples of the latter
include heterodyne and homodyne detection.
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The Fisher information for direct detection is

F ¼ �

1� Reðge�i�Þ2
cos2� sin� cos�

sin� cos� sin2�

� �
; (14)

and the eigenvalues of F are

�1 ¼ 0; �2 ¼ �

1� Reðge�i�Þ2 : (15)

The zero eigenvalue corresponds to the absence of infor-
mation about the unobservable quadrature Imðge�i�Þ.
In practice, � is varied over measurements to retrieve
information about both quadratures of g. The important
point to note here is that jjFjj ¼ �1 þ �2 � � if we take
the trace norm. The norm of the total Fisher information for

M measurements becomes jjFðMÞjj ¼ MjjFjj � M�,
which scales linearly with the average photon number
M�, thereby achieving the optimal ‘‘shot-noise’’ scaling
for parameter estimation using classical states [16].
Similarly, it is shown in [8] that the Fisher information
for the shared-entanglement scheme proposed by
Gottesman, Jennewein, and Croke [9] has in theory the
same expression but reduced by a factor of 2.

Both of the aforementioned schemes can be considered
as nonlocal quantum measurements, which require bring-
ing the two modes together physically or sharing entangle-
ment between the two sites. The physical nonlocality
makes such schemes increasingly challenging to imple-
ment technically as the distance between the two modes
increases, primarily due to accumulating decoherence in
the form of optical loss along the paths [2]. Local mea-
surement schemes, on the other hand, measure the two
modes separately before combining the results via classical
communication [Fig. 1(b)], and can therefore be imple-
mented over a much greater distance in principle. To
investigate the general performance of any local measure-
ment, let us write the observation probability distribution
for POVM EðyÞ explicitly as

PðyjgÞ ¼ ð1� �ÞE00;00ðyÞ þ �

2
½E01;01ðyÞ þ E10;10ðyÞ

þ 2jE10;01ðyÞjReðge�i�Þ�; (16)

where

Enm;n0m0 ðyÞ � hn;mjEðyÞjn0; m0i (17)

and � is the phase of E10;01. To put a bound on the Fisher

information given by Eq. (12), note that

PðyjgÞ � ð1� �ÞE00;00ðyÞ; (18)

and the positive-semidefinite matrix

D ¼ �2jE10;01ðyÞj2 cos2� sin� cos�
sin� cos� sin2�

� �
(19)

defined in Eq. (13) has a trace norm given by �2jE10;01ðyÞj2.
Applying the subadditivity property of matrix norms to
Eq. (12) results in an upper bound on jjFjj:

jjFjj � �2

1� �

X
y

jE10;01ðyÞj2
E00;00ðyÞ : (20)

For generality, I define local measurements as the ones
performed using local operations with classical communi-
cation (LOCC), which permits the measurement at one
site to be conditioned upon the observation at the other
site. A necessary condition for a spatial-LOCC POVM is

the positive-partial-transpose condition ET aðyÞ � 0 [17].

By the Cauchy-Schwarz inequality, jh1;0jEj0;1ij2 ¼
jh0;0jET a j1;1ij2 ¼ jh0;0j

ffiffiffiffiffiffiffiffiffi
ET a

p ffiffiffiffiffiffiffiffiffi
ET a

p
j1;1ij2 � h0;0jET a	

j0;0ih1;1jET a j1;1i ¼ h0;0jEj0;0ih1;1jEj1;1i, or
jE10;01ðyÞj2 � E00;00ðyÞE11;11ðyÞ: (21)

Combining Eqs. (20) and (21), I obtain an Oð�2Þ upper
bound on jjFjj:

jjFjj � �2

1� �

X
y

E11;11ðyÞ ¼ �2

1� �
; (22)

where
P

yE11;11ðyÞ ¼ 1 comes from the completeness

property of a POVM. The neglected Oð�2Þ term in the
density operator in Eq. (4) contributes an additional
Oð�2Þ term to P and an Oð�3Þ term to D, so the Fisher
information would be modified by an Oð�3Þ term and the
upper bound in Eq. (22) should be rewritten as

jjFjj � �2 þOð�3Þ: (23)

For M measurements, the bound can be generalized to
allow for adaptive measurements conditioned upon pre-
vious observations, as shown in Ref. [8]:

jjFðMÞjj � M½�2 þOð�3Þ�: (24)

This upper bound shows that the best Fisher information
any spatiotemporal-LOCC measurement can achieve is
still substantially worse than that of the spatially nonlocal

methods (jjFðMÞjj �M�) when � � 1. In other words,
spatially local measurements are fundamentally much
less efficient than nonlocal methods in extracting coher-
ence information from weak-thermal-light interferometry.
This general proof is supported by explicit Fisher-
information calculations for heterodyne and homodyne
detection [8], signal-to-noise-ratio calculations for direct
and heterodyne detection of the full thermal state given by
Eq. (1) [8], and the known fact in astronomy that direct
detection performs better than heterodyne detection for
high optical �0 [3,6]. Reference [8] also includes a dis-
cussion of the quantum origin of the nonlocality in terms of
the semiclassical photodetection picture.
Note that the advantage of nonlocal measurements is lost

for coherent states, strong thermal light with � 
 1 [8], or
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even the nonclassical single-photon state studied in
Ref. [9]. For coherent states, jgj ¼ 1 and the unknown
parameters are the phases of the two optical modes in a
product of coherent states, in which case it can easily be
shown that nonlocal measurements are not necessary,
analogous to the case of single-parameter phase estimation
with a product state [18]. For strong thermal light with
� 
 1, calculations in Ref. [8] show that the performances
of direct detection and heterodyne detection converge
and suggest that the noise in this regime is dominated
by the thermal statistics of the source rather than the detec-
tion statistics. The single-photon state studied in
Ref. [9] can also be analyzed using the formalism here
by omitting Oð�2Þ terms and then putting � ¼ 1, resulting
in comparable performances for local and nonlocal
measurements.

The peculiar existence of quantum nonlocality for
weak thermal light, as a property of bipartite measurements
applied to certain separable states, can be regarded as a
dual of Einstein-Podolsky-Rosen entanglement [4,10], a
property of bipartite states that can produce higher
correlations in certain separable measurements. In the
context of quantum communication theory, it is well
known that nonlocal measurements can extract more in-
formation from states with no entanglement [4,5,19]; the
result here provides a striking example in which the same
type of quantum nonlocality readily exists for observers
extracting information from nature.

For practical applications, the result here demonstrates
the fundamental advantage of nonlocal quantum measure-
ments for weak-thermal-light interferometry and may have
further implications for optical imaging systems, such as
compound-eye imaging and fluorescence microscopy [11].
The shared-entanglement proposal in Ref. [9] requires a
path-entangled single-photon source and quantum repeat-
ers, both of which are unlikely to become feasible in the
near future, but standard linear optics can also perform
nonlocal measurements by coherently processing multiple
optical modes before detection, provided that optical loss
can be minimized. In the short term, the result here thus
motivates the development of low-loss coherent optical
information devices, such as photonic crystal fibers and
integrated photonics, for thermal-light interferometry and
imaging [2,11,12].

Accurate coherence information can be obtained only in
the limit of many collected photons. This corresponds to
measurements of many copies of the quantum state. A
more general quantum measurement strategy than the
ones considered here involves joint quantum operations
on the multiple copies before measurements. This kind of
temporal nonlocality is not needed for parameter estima-
tion when spatially nonlocal measurements can be per-
formed [16]. It remains an interesting open question
whether coherent temporally nonlocal strategies can offer
any significant advantage when one is restricted to spatially

local measurements. Other potential generalizations
include time-varying parameters and the estimation of
temporal coherence for spectroscopy in addition to spatial
coherence. One must then take into account the dynamics
of the source and colored noise, which can be analyzed
using the quantum waveform estimation framework devel-
oped in Refs. [20].
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