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A stability correction function �mð�Þ that accounts for distortions to the logarithmic mean velocity

profile (MVP) in the lower atmosphere caused by thermal stratification was proposed by Monin and

Obukhov in the 1950s using dimensional analysis. Its universal character was established from many field

experiments. However, theories that describe the canonical shape of �mð�Þ are still lacking. A previous

link between the spectrum of turbulence and the MVP is expanded here to include the effects of thermal

stratification on the turbulent kinetic energy dissipation rate and eddy-size anisotropy. The resulting theory

provides a novel explanation for the power-law exponents and coefficients already reported for �mð�Þ
from numerous field experiments.
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Most human activity and biological processes occur
within the lower atmosphere, a thermally stratified region
characterized by shear and buoyancy-driven turbulence.
Thermal stratification arises because of diurnal heating
and cooling resulting in finite sensible heat flux (Hs) at
the Earth’s surface, while turbulence is mechanically pro-
duced due to the reduced mean velocity near the ground.
The coexistence of shear- and buoyancy-generated turbu-
lence leads to many difficulties in describing the flow
properties in the lower atmosphere. Even for a stationary,
horizontally homogeneous, high Reynolds number flow
above an infinite flat and heated (or cooled) surface, the
description of elementary flow statistics such as the mean
velocity profile (MVP) has resisted complete theoretical
treatment. There are inklings of a possible universal be-
havior in the MVP across a wide range of thermal stratifi-
cation conditions as demonstrated by the collapse of data
from multiple field experiments using dimensional analy-
sis, known as Monin-Obukhov similarity theory [1,2].
Indeed, this dimensional analysis proved so successful
that it led some [3] to state that ‘‘with proper nondimen-
sionalization, all flow statistics in the surface layer can be
reduced to a set of universal curves.’’

Monin-Obukhov similarity theory [1,2] argues that a
nondimensional MVP is given as

d �u

dz

��z

u�
¼ �mð�Þ; (1)

where �u is the horizontal mean velocity, the overbar is

Reynolds averaging, u� ¼
ffiffiffiffiffiffiffiffiffiffiffi
�o=�

p
is the friction velocity,

�o is the ground shear stress, � is the mean air density, ��

is the von Karman constant, z is the height from the
ground surface, � ¼ z=L is the atmospheric stability pa-

rameter, and L is the Obukhov length given as [4] L ¼
�u3�=��=ð gTv

Hs

�Cp
Þ, where g is the gravitational acceleration,

T is the mean virtual potential temperature, and Cp is the

specific heat capacity of dry air at constant pressure. The
�mð�Þ is a dimensionless stability correction function that
cannot generally be inferred from dimensional considera-
tions alone and must be determined from empirical data.
The so-called Businger-Dyer (BD) stability correction

function has proved successful in fitting numerous field
experiments reporting �mð�Þ, including the results of the
classic Kansas experiments [5] shown in Fig. 1. These
�mð�Þ functions are used in virtually all climate, atmos-
pheric, hydrologic, and ecological applications or models
of land-surface processes when land-surface fluxes are to
be coupled to the state of the atmosphere [6,7]. The BD

FIG. 1. The determination of �mð�Þ from the Kansas experi-
ment. Note the quasilinear increase for stable atmospheric con-
ditions (� > 0) and the �1=4 power-law dependence for
unstable conditions (� < 0). The so-called Businger-Dyer (BD)
stability correction functions are shown as lines. The �mð�Þ is
expected to scale as ð��Þ�1=3 as the free convection limit is
approached, often coinciding with �� > 5 (not shown here) as
discussed elsewhere [10].
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�mð�Þ is expressed as [8] �mð�Þ ¼ ð1� 16�Þ�1=4 when
� < 0 (hereafter referred to as unstable conditions charac-
terized by Hs > 0 during daytime) and �mð�Þ ¼
ð1þ 4:7�Þ when � > 0 (hereafter referred to as stable
conditions characterized by Hs < 0 as may occur during
nighttime). For nonthermally stratified yet sheared (u�>0)
flows (e.g., neutral conditions, Hs ¼ 0, L ! 1, and there-
fore � ¼ 0), �mð0Þ ¼ 1, thereby recovering the well-
known ‘‘log law of the wall’’ [2] d �u=dz ¼ u�=ð��zÞ. A
major critique of the BD �mð�Þ is their failure to recover

the well-known free convection limit [9] given as�mð�Þ �
��1=3 so as to cancel out any u� dependence in the MVP
when �� is very large [10]. This critique was partially
addressed by the so-called KEYPS or the O’KEYPS equa-
tion (after Obukhov, Kazansky, Ellison, Yamamoto,
Panofsky, and Sellers) given by [11–13]

½�mð�Þ�4 � ��½�mð�Þ�3 ¼ 1; (2)

whose analytical solution for �mð�Þ> 0 is given in the
Supplemental Material [14]. The � is an empirical constant
that must be inferred from data. First proposed by Obukhov
[4,15], the O’KEYPS equation was intended to be an
interpolation function that recovers the BD scaling for
mildly unstable conditions (for small ��) while ensuring

that �mð�Þ � ð��Þ�1=3 for very large �� . Theoretical
justification for the O’KEYPS equation remained heuristic
and assumed a constant heat to momentum eddy diffusivity
(see Supplemental Material [14]), an assumption negated
by the Kansas experiment thereby preventing widespread
acceptance of the O’KEYPS equation. The aim here
is to provide a theoretical framework to predict the
shape of �mð�Þ, which has thus far remained elusive,
lagging behind experiments [3,10,16,17] and numerical
simulations [18].

For a stationary, planar homogeneous, high Reynolds
flow with negligible subsidence and mean horizontal pres-
sure gradient, the mean longitudinal momentum balance
reduces to @�tðzÞ=@z ¼ 0, where �t is the turbulent stress at
height z assumed to represent the total stress at the ground,
�o, resulting in �t ¼ �o ¼ �u2�. In the absence of any
thermal stratification (jLj ! 1), a theoretical linkage be-
tween the MVP and the spectrum of turbulence has re-
cently been proposed [19]. Such a framework serves as a
starting point in the analysis of heated or cooled bounda-
ries. The momentum flux exchanged by the most effective
momentum transporting eddy at level z is given by [19]
(Fig. 2)

u2� ¼���ðsÞ½ �uðsþzÞ� �uðs�zÞ�����ðsÞ
�
d �uðzÞ
dz

2s

�
; (3)

where �uðsþ zÞ � �uðs� zÞ is the net momentum per unit
mass exchanged at height z due to eddies of size 2s, �ðsÞ ¼
jwðxþ 2sÞ � wðxÞj is the turnover velocity characterized
by the magnitude of the velocity difference assuming the
eddy in Fig. 2 is isotropic, and �� is a proportionality

constant. The eddy size that contributes most efficiently
to �o is an eddy ‘‘touching’’ the ground surface resulting in
s ¼ z and simplifying Eq. (3) to

2
��

��

�ðzÞ
u�

�
duðzÞ
dz

��z

u�

�
¼ 2

��

��

�ðzÞ
u�

½�m� ¼ 1: (4)

An estimate of �ðzÞ, the turnover velocity, is necessary
to describe �m. This estimate may be provided from
Kolmogorov’s 4=5 law for the third-order velocity struc-

ture function [20,21], according to which �ðzÞ ¼
½�		z�1=3, where �	 ¼ 4=5, and 	 is the mean turbulent
kinetic energy (TKE) dissipation rate. This estimate of �ðzÞ
is exact for locally homogeneous and isotropic turbulence
[21] and can be used in Eq. (4) provided 	 is known. To
determine 	, the TKE budget subject to the same idealized
flow conditions as the mean longitudinal momentum bal-
ance reduces to [22]

	 ¼ u2�
@ �u

@z
þ g

Tv

Hs

�Cp

þ
�
� 1

2

@w0e02

@z
� 1

�

@w0p0

@z

�
; (5)

where e is the TKE, p0 is the turbulent pressure, and w0 is
the turbulent vertical velocity. The first and second terms
on the right-hand side of Eq. (5) are the mechanical pro-
duction and the buoyant production or dissipation depend-

ing on the sign of Hs. The w
0e2 and w0p0 are the turbulent

transport and pressure redistribution of TKE, and these
terms do not ‘‘globally’’ contribute to any generation or
destruction of TKE within the entire atmospheric boundary

layer because
R
h
0ð� 1

2
@w0e2
@z � 1

�
@w0p0
@z Þdz ¼ 0, where h is the

atmospheric boundary layer height. Upon neglecting any
contributions arising from the turbulent TKE transport and
pressure redistribution terms locally at height z, Eq. (4)
becomes

2���
1=3
	

�4=3
�

½�m�
�
��z

u3�

�
u2�

@ �u

@z
þ g

Tv

Hs

�Cp

��
1=3 ¼ 1: (6)

0

)())()(( sszuszut

FIG. 2 (color online). Derivation of the turbulent shear stress
for an isotropic eddy of size 2s as in [19]. The characteristic eddy
here transfers momentum down at a rate �uðzþ sÞ�ðsÞ and up at
a rate �uðz� sÞ�ðsÞ, where variations in �ðzÞ were neglected
relative to variations in uðzÞ in the momentum transfer. The most
efficient eddy size that transports momentum to the ground is an
eddy of size 2s ¼ z. A departure from the [19] approach is the
addition of the ground heating or cooling (Hs).
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Using the definition of L, Eq. (6) can be expressed as


1½�mð�Þ�4
�
1� �

�mð�Þ
�
¼ 1; 
1 ¼ 23�3

��	

�4
�

: (7)

Imposing �mð0Þ ¼ 1 results in 
1 ¼ 1 and �� ¼ ð1=2Þ�
ð�4

�=�	Þ1=3 � 0:21. This linkage between the constant ��,
the Von Karman constant ��, and the Kolmogorov’s 4=5
law (via �	) is an outcome of attached eddies of size z
being within the inertial subrange, a range bounded
above by the integral length scale of the flow (IL) and
below by the Kolmogorov viscous dissipation length scale

(� ¼ �3=4	�1=4, where � is the kinematic viscosity). When
Hs > 0, Eq. (7) recovers all the scaling exponents observed
in�mð�Þ for small and large � . For small values of�� , the
�1=4 power-law (shown in Fig. 1 for unstable conditions)
is recovered by noting that the term ½�=�mð�Þ� � � so that

½�mð�Þ�4½1� �� � 1;) �mð�Þ � ð1� �Þ�1=4: (8)

For large �� , the �1=3 power law for convective scaling
[9,17] (not shown in Fig. 1) is recovered by noting that the
term ½��=�mð�Þ� � 1 so that

½�mð�Þ�4½��=�mð�Þ� � 1;) �mð�Þ � ð��Þ�1=3: (9)

For stable atmospheric conditions and large � , �=�m < 1
to maintain �m > 0, and hence �m must increase propor-
tionately with increasing � .

Equation (7) becomes identical to the O’KEYPS equa-
tion when � ¼ 1. However, the derivation leading to
Eq. (7) makes no assumptions about similarity between
heat and momentum transfer and does not employ heuristic
gradient-diffusion closure arguments regarding the vertical
velocity variance, unlike previous derivations of the
O’KEYPS equation [13,23,24]. Our analysis leading to
Eq. (7) demonstrates that the canonical form of the
O’KEYPS equation (to within a constant �) emerges natu-
rally within the atmospheric surface layer when eddies of
size z are most efficiently exchanging momentum with the
ground and are ‘‘embedded’’ within the inertial subrange
(i.e., � � z � Il).

When fitted to a number of data sets, the parameter � in
the O’KEYPS equation is larger than unity. Reported
values range from 5 to 18, with � ¼ 9 proposed by a
number of authors [12,13]. The derivation here identifies
two possible reasons why � is larger than unity and may
not be entirely universal: (1) contributions from the turbu-
lent flux-transport and pressure redistribution terms in the
TKE budget, and (2) anisotropy of the attached eddy to the
ground surface along with concomitant departure from

the Kolmogorov scaling, �ðzÞ ¼ ½�		z�1=3. In the first
case, it is known that the sum of the flux-transport and
pressure redistribution terms both increase in magnitude
(but oppositely in sign) with increasing Hs for unstable
conditions. Equation (7) may be expanded to account for
this increase via a coefficient 
2 so that

	 ¼ u2�
@u

@z
þ g

Tv

Hs

�Cp

ð1þ 
2Þ;


2 ¼
ð� 1

2
@w0e2
@z � 1

�
@w0p0
@z Þ

g
Tv

Hs

�Cp

:

(10)

For the simplest case of a constant 
2, it can be shown that
the O’KEYPS equation is recovered if � ¼ 1þ 
2.
However, inclusion of the transport and redistribution
terms to the TKE budget in isolation is not sufficient to
provide values as large as � ¼ 9 (or the factor 16 in BD). In
fact, despite large uncertainties in the magnitude of the
pressure redistribution term, the values of 
2 from the
Kansas experiments are never much larger than unity [25].
For the nonisotropic eddy scenario, the vertical dimen-

sion of the eddy that contributes most efficiently to mo-
mentum exchange remains of size s ¼ z. However, the
longitudinal dimension of the eddy is no longer z. To
account for such large-scale anisotropy in the calculation
of �ðs0Þ, it may be assumed that s0 ¼ zfð�Þ, where fð�Þ is a
dimensionless anisotropy function such that fð0Þ ¼ 1 to
recover the log law. The derivation proceeds as before,

with �ðs0Þ ¼ ½�		zfð�Þ�1=3 and Eq. (3) becoming

2���
1=3
	

�4=3
�

½�m�
�
��zfð�Þ

u3�

�
u2�

@u

@z
þ g

Tv

Hs

�Cp

ð1þ
2Þ
��

1=3 ¼ 1:

(11)

Hence, the revised Eq. (6) is now given by

½�m�4
��

1� ð1þ 
2Þ �

�m

��
¼ 1

fð�Þ : (12)

An estimate of fð�Þ can be determined from the ratio of
wavelength [�wð�Þ] corresponding to the vertical velocity
spectral peaks relative to their near-neutral [�wð0Þ] coun-
terpart [16]. From the Kansas experiments, fð�Þ ¼
�wð�Þ=�wð0Þ resulting in

fð�Þ ¼ zð0:55� 0:38j�jÞ�1

zð0:55� 0Þ�1
¼

�
1� 0:38

0:55
j�j

��1
;

� � < 1;
(13)

fð�Þ ¼ 3:23; 1<�� < 0:1h=L: (14)

For moderately stable conditions, it is difficult to determine
fð�Þ given the dependence of this wavelength on absolute
L and possible independence from z. However, for � > 1:5,
fð�Þ can be smaller than 0.1. It is instructive to explore how
well fð�Þ � 1 connected only to anisotropy in eddy sizes
recovers the data in Fig. 1. An interpolation formula to
Eq. (14), given as fð�Þ ¼ ð1� 0:38

0:55 ½1� expð15�Þ�Þ�1 was

used for zeta< 0. This formula guarantees that fð0Þ ¼ 1
recovers a near-constant fð�Þ for�� < 1, and ensures that
this constant limit is approached smoothly at �� ¼ 1
(Fig. 3). For stable conditions (� > 0), it is assumed that
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fð�Þ ¼ ð1þ 1
0:55 �Þa, where the bracketed quantity is in-

ferred from vertical velocity spectral peaks for very mildly
stable conditions, and a � �6 is needed to ensure an
approximately smooth dfð�Þ=d� for small � as the flow
transitions from stable to unstable conditions. Using these
anisotropy functions and assuming a 
2 ¼ 1, predictions
based on Eq. (12) are compared against the data from the
Kansas experiment (Fig. 1) as well as the O’KEYPS equa-
tion with � ¼ 9, as shown in Fig. 3. It appears that this
plausible combination of 
2 and fð�Þ does offer a novel
explanation for the variations in measured �mð�Þ with � .

The long-surmised link between the stability correction
functions for momentum, the Kolmogorov spectrum, and
the turbulent kinetic energy budget was established across
a wide range of atmospheric stability regimes. The canoni-
cal form of the O’KEYPS equation arises from this link
when the momentum transporting eddies attached to the
ground remain embedded within the inertial subrange. The
novelty of the derivation is that no assumptions are made
about equality between heat and momentum transfer or
about heuristic gradient-diffusion modeling of the vertical
velocity variance. Moreover, the proposed derivation sug-
gests that the empirical parameter � of the O’KEYPS
equation (or the factor of 16 in the BD equations) is partly
linked to contributions arising from the turbulent transport
and pressure redistribution terms in the turbulent kinetic
energy budget (via 
2). The � primarily encodes all the
information about changes in the spectrum of turbulence in
general and the anisotropy in the momentum transporting
eddies, in particular, as atmospheric stability regimes are
altered. The anisotropy argument presented only modifies
the longitudinal geometry shown in Fig. 2 with progressive
changes in Hs. This argument can be completed by noting
that not only the most energetic length, but the entire

spectrum of the vertical velocity scale is modified by � .
More formally, this modification leads to a revised estimate
of �ðsÞ2 ¼ R1

1=s Ewð�Þd�, where Ewð�Þ is the energy spec-
trum of the vertical velocity at wave number � [19]. With

such a representation, �ðsÞ ¼ ð�		sÞ1=3
ffiffiffiffiffiffiffiffiffiffiffi
Iwð�Þ

p
, where

Iwð�Þ is a correction to the Kolmogorov scaling primarily
due to the fact that the low-frequency component of Ewð�Þ
is modified by � . This correction may be small for unstable
conditions given the extensive spread of the inertial sub-
range in the velocity spectra [16]. For very stable flows,
fð�Þ goes to zero very fast (as shown in Fig. 3), and
therefore the effect of the anisotropy in Eq. (12) becomes
very large. Accounting for the effect of the eddy-size
anisotropy on the full spectrum of the vertical velocity
may reduce this rate of growth, as changes in the dissipa-
tive regime of the spectrum act as a low-pass filter. Note
that in field experiments, Iwð�Þ may be ‘‘contaminated’’
by unsteadiness originating from the outer layer due to
mesoscale motion (i.e., a violation of the assumption of
stationary flow) and may lead to nonuniversal �mð�Þ.
There are two ‘‘end-member’’ limits not considered

here: the pure convection and the very stable atmospheric
limits. As to the former, the framework adopted in Fig. 2 no
longer applies as finite shear is necessary for such analysis
(�o > 0). It was shown in some field experiments [10] that
as u� ! 0 (no shearing) and whenHs remains high,�mð�Þ
seems to exhibit some increase with increasing �� for
�� > 5 that is not reproduced here. With regard to the
very stable stratification, the flow may not be entirely
turbulent, and unsteadiness can emerge due to multiple
exogenous phenomena [26] not considered here such as
passage of clouds. An appreciation as to why �mð�Þ for
such a stably stratified flow condition remains so difficult
to predict theoretically is discussed next. We have shown
that for �5< � < 2, a close relationship between �mð�Þ
and � characterizing the MVP and the properties of the
turbulent energy spectrum (especially the Kolmogorov
inertial subrange scaling) was established. This indicates
that atmospheric surface layer flows resemble continuous
phase transitions (or transitions of the second order) in
which the global state (i.e., MVP) is impacted by the
statistics of the fluctuations (i.e., the power-law spectrum
of the turbulent velocity fluctuations). The collapse of the
data and the near-universal character of �mð�Þ across a
wide range of u� andHs boundary conditions (analogous to
external fields) suggests an analogy to the so-called
‘‘Widom scaling’’ near critical points reviewed by
Goldenfeld [27] via the reduced variable � . This type of
transition differs from the classical (or first-order) transi-
tion to turbulence in which a laminar flow is subjected to an
instability whose amplitude scales with the Reynolds
number. However, for stable atmospheric flows in which
thermal stratification entirely dampens the mechanical
production of turbulence [26] in Eq. (10), both types of
critical transitions coexist within a typical Reynolds

-4 -2 0 2
0

0 .5

1

1 .5

2

2 .5

3

3 .5

-4 -2 0 2
0

5

10

15

20

m

-0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

FIG. 3 (color online). Left: Estimation of the anisotropy
function fð�Þ from the measured wavelength corresponding to
the vertical velocity spectral peaks in the Kansas experiment.
The dashed vertical line indicates the value of � where the
�wð�Þ=�wð0Þ becomes quasiconstant according to the Kansas
data. The dotted vertical lines indicate the near-neutral regime
(j � z=Lj< 0:1) Right: Comparison between measured (circles)
and modeled (solid line) �mð�Þ with 
e ¼ 1 and the fð�Þ shown
in the left panel. The classical Businger-Dyer�mð�Þ (dotted line,
BD) and predictions from the O’KEYPS equation with � ¼ 9
(dashed line) are also shown for reference.
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averaging period. If so, this coexistence may explain why a
complete theory for moderately to very stable atmospheric
flows is currently beyond reach [28].
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