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We study by simulation the physics of two colloidal particles in a cholesteric liquid crystal with

tangential order parameter alignment at the particle surface. The effective force between the pair is

attractive at short range and favors assembly of colloid dimers at specific orientations relative to the local

director field. When pulled through the fluid by a constant force along the helical axis, we find that such a

dimer rotates, either continuously or stepwise with phase-slip events. These cases are separated by a sharp

dynamical transition and lead, respectively, to a constant or an ever-increasing phase lag between the

dimer orientation and the local nematic director.
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Self-assembly is one of the key aims of present-day
nanotechnology. The idea underpinning this concept is
that, through a careful control of the interactions in a
suspension of particles, it is possible to drive the sponta-
neous formation of an ordered target structure or pattern,
starting from a disordered initial condition. The process is
spontaneous as it often entails the minimization, whether
global or local, of the free energy of the system. An out-
standing specific challenge in modern self-assembly is to
build a structure with a target dynamic feature, such as a
synthetic microscopic rotor, walker, or swimmer [1].

Colloidal dispersions in liquid crystals offer a useful
system for the development of self-assembly strategies at
the microscale. Even in nematics, the simplest liquid crys-
talline phase, elastic distortions, and topological defects
mediate a variety of interactions resulting in the formation
of wires, colloidal crystals, cellular solids, and clusters
entangled by disclinations [2–4]. This variety of self-
assembled structures is possible because one can tune the
liquid crystal mediated interactions by changing, e.g.,
the strength and nature of the liquid crystal ordering at
the colloidal surface. These alter the local symmetry of the
director field near the particle and hence qualitatively
change the effective interparticle forces.

Herewe show that a powerful way to extend the potential
for self-assembly of colloids in liquid crystals is to consider
cholesterics, or chiral nematics. In cholesterics the direction
of the molecular order in the ground state spontaneously
twists. The spatial modulation of the twist is in the micron
range, therefore of the order of typical colloidal sizes. We
have previously shown [5] that by varying the ratio between
these two fundamental length scales, it is possible to change
continuously the topology of the defects, or disclination
lines, surrounding a single particle—morphological
changes with no direct counterpart in nematics. Very re-
cently, Mackay and Denniston [6] took a step further and
studied the interparticle elastic force felt in a cholesteric by
two colloidal spheres with tangential anchoring of the

director field at their surface. As in the nematic case [7],
there is a complex interplay between repulsive and attrac-
tive directions which leads to the formation of a dimer or
longer chains. Here we focus on the simplest case of a
dimer, but progress beyond the purely static investigation
of [6] to show that such a dimer exhibits unexpected and
intriguing dynamical properties. When subjected to an ex-
ternal force (for instance gravity) along the cholesteric
helix, the dimer rotates about this axis in a screwlike fash-
ion. Depending on the magnitude of the force, the dimer
either rotates continuously or exhibits phase slippage, alter-
nating periods of smooth rotation with static spells in which
it translates without rotation. This dynamical transition
shows similar near-critical behavior to the depinning of
driven vortices and of charged density waves in supercon-
ductors, both of which may be studied with the Frenkel-
Kontorova model for transport in a periodic potential [8].
Another analogue is provided by the synchronization of
coupled oscillators described by the Kuramoto model [9].
Within our liquid crystal context, the phase slippage regime
requires a specific free energy landscape which we discuss.
This provides potential for the design of self-assembled
systems with tunable dynamic properties.
The system we study consists of two spherical colloidal

particles of radius R moving in a cholesteric liquid crystal.
To describe the thermodynamics of the chiral host, we
employ a Landau–de Gennes free energyF , whose density
f may be expressed in terms of a traceless and symmetric
tensor order parameter Q [10] and is detailed in [11].
Tangential anchoring is modeled by a surface free energy,
fs ¼ 1

2WðQ�� �Q0
��Þ2, where W is the strength of an-

choring and Q0
�� is the preferred order parameter in the

tangent plane to the local spherical surface [12].
We employ a 3D hybrid lattice Boltzmann (LB) algo-

rithm [13] to solve the Beris-Edwards equations forQ [10]
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Here, � is a collective rotational diffusion constant and Dt

is the material derivative for rodlike molecules [10]. The
term in brackets is known as the molecular field, which in
the absence of flow drives the system towards a free energy
minimum. The boundary conditions for the order parame-
ter on the colloidal surfaces are given by [4]

��

@f

@@�Q��

þ @fs
@Q��

¼ 0; (2)

where �� is the local normal to the colloid surface.

The velocity field obeys the continuity and Navier-
Stokes equation, with a stress tensor generalized to de-
scribe liquid crystal hydrodynamics [10]. Within our
hybrid scheme, we solve the Navier-Stokes equation via
LB, and Eq. (1) via finite difference [5]. Colloids are
represented by the standard method of bounceback on
links, which leads to a no-slip boundary condition for the
velocity field (see [5,14] for details). Order parameter
variations create an additional elastic force acting on the
particle which is computed by integrating the stress tensor
over the particle surface [4,5].

The dynamics is primarily controlled by the Ericksen
number, Er ¼ �1vR=K, where the rotational viscosity
�1 ¼ 2q2=�, v is a velocity characteristic of the flow,
and q is the degree of ordering in the system. In the
uniaxial case with director n̂, Q�� ¼ qðn̂�n̂� � ���=3Þ.

In what follows, we quote our results in simulation units
[11,13]. To convert them into physical ones, we can specify
an elastic constant of 28.6 pN, and a rotational viscosity of
1 P. (These values hold for typical materials, and a colloidal
diameter of 1 �m.) In this way, the simulation units for
force, time, and velocity can be mapped onto 440 pN,
1 �s, and 0:07 �m=s, respectively.

We first consider the interparticle elastic potential. Two
particles are placed center-center separation vector d apart.
Both particles are held fixed for the duration of a simula-
tion in which the free energy is minimized. By repeating
simulations for different d, we map out the effective two-
body potential as a function of the reduced separation
ðd� 2RÞ=p in the three coordinate directions, and as a
function of angle in the x-y plane [Fig. 1(a)]. The potential
is markedly anisotropic. While the potential in z shows
strong repulsion at large separations, there is an attraction
in the x-y plane. The most favorable configuration at
small separations is along the director field [x direction
in Fig. 1(a)]. Here we estimate a maximum attractive
force of 20 pN. Before this deep minimum is reached the
dimer needs to overcome a repulsion [peak at ðd�
2RÞ=p � 0:2], which is the largest when the disclinations
at the opposing particle surfaces join up. In this bound
state, the colloids share two disclination lines which act as
a glue between them [right, Fig. 1(b)]. For separation
vectors perpendicular to n̂ we find a stable minimum and
no repulsive barrier [y direction in Fig. 1(a)]. These results
are far from the nematic limit studied experimentally in [7]
and theoretically in [15], as well as from results obtained in

a twisted nematic cell [16]. Most notably, the in-plane
potential perpendicular to n̂ (here y) was always repulsive
in the nematic [15]. The preferred configuration (here,
along n̂) is at an angle of about 30� in the nematic [7,15].
These results confirm and extend those of [6] on the

energetics of dimer formation in cholesterics. Our key
focus in the present work is dynamics. We place two
particles initially near the weaker minimum of the potential
in the direction perpendicular to n̂ [left, Fig. 1(b)]. This is
the first relatively deep local minimum two particles ap-
proaching from far away would encounter. It is therefore a
natural self-assembled configuration for the dimer. We then
pull each along the helical axis with force f.
At all force levels studied here, the moving dimer rotates

about its center of mass while d remains perpendicular to
the helical axis [inset, Fig. 2(e)]. The behavior at low force
(f � 0:025) is illustrated in Figs. 2(a)–2(d). We quantify
the rotation by measuring the angle � between d and the
x axis and the angle � between d and n̂ðzÞ [Fig. 1(c)], as a
function of time. After an initial transient, a smooth rota-
tion is observed [Fig. 2(e); open symbols], but with sepa-
ration d that lags behind n̂ðzÞ by a constant phase angle �ðtÞ
[Fig. 2(f), open symbols] [17]. We attribute this constant
lag to a balance between the viscous drag opposing the
rotation of the pair in the x-y plane, and the force arising
from the angular variation in the rotating interparticle
potential.
At higher force (f � 0:0275), the behavior is manifestly

different. The angle between d and x, shown in Fig. 2(e)
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FIG. 1 (color online). (a) Interparticle elastic potential as a
function of reduced separation ðd� 2RÞ=p, along the helical
axis (z) and in the x and y directions. The inset shows the angular
dependence in the x-y plane at ðd� 2RÞ=p � 0:05. Units are in
kBT � 4 pN nm. (b) Snapshots of the dimer showing the discli-
nation lines at ðd� 2RÞ=p � 0:05 when d is along y and along
x. The Cartesian axes, the separation d, and the far-field nematic
director n̂ are shown. (c) Definition of the angles � and� used in
the text. For error analysis see Supplemental Material [11].
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(closed symbols), now increases with time in a series of
steps. These steps correspond to intervals with and without
significant rotation of the dimer as it moves along the helix
(see [11] for a movie and further discussion of the dynam-
ics). Correspondingly, the phase lag �ðtÞ fails to reach a
steady value [Fig. 2(f), closed symbols], but increases
indefinitely. We refer to this as ‘‘phase slippage.’’ There
is a clear transition between the smooth ‘‘rotor’’ regime
and the phase slippage regime.

Figure 3(a) quantifies the dependence of the average
rotational velocity of the dimer � on the applied force
for simulations at a range of force values. It can be seen that
� is proportional to f in the low-force rotor regime, while
it decreases in the high-force phase slippage regime.
Figure 3(b) shows the dependence of the average speed
of the dimer along the helical axis with force, again show-
ing a transition. However, it is difficult to relate these
transitions to the equilibrium potential which is strictly
valid only at Er ¼ 0. Although the largest Eriksen number
remains low (Er � 0:026), the potential is likely to be
affected by dynamical effects including the local bending
of the cholesteric layers [visible in Figs. 2(a)–2(d) [11]).
The local bending of the layers for Er � 1, was also
observed for a single colloid moving along the helical
axis [5].

To understand the dynamical transition better, we write
down a set of phenomenological equations for the evolu-
tion of the dimer position, zðtÞ, and for �ðtÞ, which gives
the direction of d in the lab frame [Fig. 1(c)]. We assume
that the basic features of the cholesteric ordering may be
captured by an effective angular potential, also periodic in
z: Vð�; zÞ. Our equations read as follows,

d�

dt
¼ � 1

��

@Vð�; zÞ
@�

;
dz

dt
¼ � 1

�z

@Vð�; zÞ
@z

;

Vð�; zÞ ¼ �A cos½Bð�� q0zÞ� þ fz:

(3)

Here, A (units of energy) and B (dimensionless) are posi-
tive constants, f is the external forcing, while �� and �z

are relaxational constants related to the rotational and
translational friction of the dimer, and whose exact values
we will not need. Equations (3) may be solved by an ansatz
suggested by the behavior in Fig. 2(f). We write �ðtÞ ¼
�tþ �ðfÞ, where the director-dimer angle follows the
most favorable orientation apart from a phase lag, �ðfÞ.
This ansatz is a solution provided that f is smaller than a
critical threshold fc, i.e., in the rotor phase. By estimating
the average terminal velocity of the dimer as f=��, we find

that in the rotor phase the angular velocity is ��
2	f=ð�zpÞ (this is true within statistical error using data
in Fig. 3), and that the critical force is fc ¼ A�zp=ð2	��Þ.
Above this threshold, � increases with time as in Fig. 2(f)

(solid symbols). The asymptotic velocity �lag½¼
d�ðtÞ=dt� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 � f2c
p

[11] for f ! fc provides a useful
‘‘order parameter’’ to characterize the rotor-slippage tran-
sition. In contrast, the angular velocity� decreases as 1=f
for large f.
Importantly, Eqs. (3) capture both the near-critical be-

havior of�lag, and the large f behavior of� shown by our

full LB simulations [see Fig. 3(a) for an �� 1=f fit and

Fig. 3(c) for a �lag �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � f2c

p
fit]. The near-critical be-

havior of �lag in our transition is similar to that of the

velocity of a chain of driven particles in a periodic potential
described by the Frenkel-Kontorova model [8], suggesting
that our dimer provides a liquid crystal representative of a

 0
 360
 720

 1080
 1440
 1800
 2160

 0  0.2  0.4  0.6  0.8  1  1.2

θ(
t)

 d
eg

re
es

simulation step/106

fz=0.04
fz=0.03

fz=0.025
fz=0.02

 80
 160
 240
 320
 400
 480
 560
 640

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

φ(
t)

 d
eg

re
es

y

 84

 90

 96

 0  0.3  0.6  0.9

z

FIG. 2 (color online). (a)–(d) Snapshots of a steadily rotating
dimer over a translation of half a pitch (a rotation of 180�). The
director field is color coded according to the local director (red
along x, blue along y). The time evolution of (e) � and (f) �
[defined in Fig. 1(c)], for the rotor (open symbols) and phase
slippage (closed symbols) motion. The inset in (e) also shows the
angle between d and the helical axis, which remains close to 90�.

FIG. 3 (color online). Average rotational velocity (�) (a) and
sedimentation velocity (b) of the colloidal dimer as a function of
the forcing. The nonlinear fit in (a) is � ¼ c=f, with c > 0 a
constant. (c) shows �lag as a function of f together with a fit to

d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � f2c

p
, with d > 0 a constant and fc � 0:0267	 0:0005.
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wider class of models [11]. Another analogue is with the
synchronization of two driven oscillators described by the
Kuramoto model [9,11], where synchronized and un-
synchronized states correspond to the rotor and slippage
regimes, respectively. At the same time, we note that the
physics of our cholesteric dimers is richer than that in
Eqs. (3). Whereas the symmetry of the problem suggests
that there should always be a very-low-force regime in
which the dimer behaves as a rotor, the existence of the
phase slippage regime at higher forces depends on the form
of the effective pair potential. The required conditions hold
for tangential anchoring but, according to our preliminary
studies is violated in the normal anchoring case, for which
we have not observed a phase-slip regime.

Our study may be viewed as a generalization of a
classical problem: the sedimentation of two spheres in a
viscous fluid. Intriguingly, Fig. 3(b) shows that the
velocity-force curves are not linear, even in the Stokes
limit of effectively zero Reynolds number. Rather, they
appear to have different slopes (i.e., effective viscosities) in
the rotor and phase slippage regimes. This is different to
what occurs for a single sedimenting particle in a choles-
teric, which leads to a linear velocity-force relation in the
force range simulated here [5]. This biphasic force-
velocity curve is due to the dynamic transition we dis-
cussed, and has no counterpart in classical sedimentation,
in either Newtonian or Maxwell fluids. In the Newtonian
case, sinking side by side speeds up the particles, by up to a
factor of 2 [18], which is not true in our rotor phase (where
we find that a dimer sediments slower than a single parti-
cle). In a Maxwell fluid, the repulsive or attractive inter-
action between two spheres sedimenting side by side is
controlled by normal stresses [19]. In our case, we find a
novel velocity-dependent torque and a dramatic depen-
dence on the nature of the anchoring.

In conclusion, we have studied the equilibrium and
dynamic properties of two colloidal spheres in a choles-
teric liquid crystal. We have seen that chirality leads to a
major change in the effective potential felt by the pair, with
respect to the nematic limit. The elastic forces we find lead
to the stabilization of a dimer at an angle of either 0� or
90�, as opposed to the 30� found in nematics. These
results, alongside those of Ref. [6], suggest that it would
be instructive to repeat the experiments performed in
Ref. [7] with a cholesteric liquid crystal. Based on our
results, one may also speculate that variations in particle
size (or cholesteric pitch) can affect the local free energy
landscape of colloidal suspensions in liquid crystals, and
potentially drive the self-assembly of different structures.

Our main result is that, when subjected to an external
force, the dimer rotates, either smoothly as a corkscrew or
intermittently, with phase slippage. This transition occurs
as the forcing exceeds a critical threshold: its value may be
estimated via a simple theory considering the interplay
between a spatially periodic angular potential and an

external driving. The existence of the phase slippage re-
gime is, however, highly nontrivial and relies on a delicate
balance in the equilibrium and dynamic properties of our
dimers: for example, we have not observed it for dimers
with normal anchoring. An interesting possibility for future
research would be to study the effects of external electric
field applied to our colloidal dimer, as done with platelets
[20] and nematic colloids [21], where unusual dynamics
was triggered by the field.
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