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This Letter provides the solution to a yet unsolved basic problem of solid state physics: the ground state

energy of an arbitrary number of Cooper pairs interacting via the Bardeen-Cooper-Schrieffer potential.

We here break a 50 yr old math problem by analytically solving Richardson-Gaudin equations which give

the exact energy of these N pairs via N parameters coupled through N nonlinear equations. Our result

fully supports the standard BCS result obtained for a pair number equal to half the number of states feeling

the potential. More importantly, it shows that the interaction part of the N-pair energy depends on N as

NðN � 1Þ only from N ¼ 1 to the dense regime, a result which evidences that Cooper pairs interact via

Pauli blocking only.
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Superconductivity [1–4] is one of the most fascinating
phenomena of solid state physics. Its physical understand-
ing stayed a major problem for half a century [5]. The first
step towards this understanding came from H. Fröhlich [6]
who pointed out that two electrons with opposite spins can
attract each other via the ion motion. A few years later,
L. Cooper showed [7] that, no matter how weak this
attraction is, two electrons with opposite spins can form
a bound state when added to a Fermi sea in an energy layer
where a small attracting potential acts—we will call this
layer ‘‘potential layer’’ in the following. To handle more
than one pair is difficult because this imposes control over
Pauli blocking between paired fermions. A way to over-
come this difficulty is to turn to the grand canonical
ensemble, with a nonfixed pair number, as proposed by
Bardeen, Cooper and Schrieffer (BCS). Using a wave
function ansatz—based on the idea that electron pairs are
bosonic particles, so that they are likely to condense into
the same state—they derived [8], through a minimization
of the Hamiltonian mean value, the condensation energy
for electrons filling half the potential layer.

A few years after BCS work, R. W. Richardson [9–11]
and M. Gaudin [12,13], made an important step in showing
that the BCS Hamiltonian leads to one of the very few
exactly solvable Schrödinger equations. Indeed, the exact
energy of N up spin and N down spin electrons paired by
the so-called ‘‘reduced BCS potential,’’

VBCS ¼ �V
X

wp0wpa
y
p0"a

y
�p0#a�p#ap"; (1)

with wp ¼ 1 for "F0
< "p < "F0

þ�, reads as a sum of N

complex quantities Rj solution of N algebraic equations.

Although this is a significant advance compared to solving
a second order differential equation for N-body wave
function, the resolution of these N equations still is a
formidable math problem which, over the past half century,

stayed unsolved for arbitrary N and potential strength.
Through an elegant electrostatic analogy [14],
Richardson succeeded in recovering the BCS condensation
energy in the large N limit. For small enough N, these
equations are commonly approached numerically to under-
stand the physics of superconductor granules [15–17].
Cooper pairs are composite bosons quite different from

the semiconductor excitons we extensively studied over the
last decade [18]. Through our exciton studies, we however
understood that the many-body physics of composite bo-
sons is driven by the Pauli exclusion principle between the
particle fermionic components. To microscopically control
the effect of Pauli blocking when the Cooper pair number
increases, we must stay in the canonical ensemble with
both, the number of pairs and the number of states avail-
able for pairing, fixed. This is why we decided to tackle
these Richardson-Gaudin equations again in order to solve
them analytically for arbitrary N.
To grasp the trend induced by Pauli blocking on the pair

binding energy, we first considered two pairs: even this
N ¼ 2 problem had no known solution although this def-
initely is the next problem to tackle after N ¼ 1 studied by
Cooper. A year ago, we showed [19] that the exact energy
for two pairs reads as

E2 ¼ 2E1 þ 2

�

�
1þ 2�

1� �

�
tan�=2

�=2
; (2)

with � such that

2� sin�

1� 2� cos�þ �2
¼ 2

���
� �: (3)

E1 ¼ 2"F0
� "c is the single-pair energy found by Cooper.

"F0
is the Fermi energy of the electrons which do not feel

the potential. 2�=ð1� �Þ ¼ "c=� is the single-pair bind-
ing energy in units of the potential extension �. The
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parameter � ¼ expð�2=�VÞ, with � being the density of
states taken as constant in the potential layer, is sample
volume free, � and 1=V linearly increasing with volume.

This 2-pair energy gives hints to understanding the
effects of Pauli blocking on Cooper pairs. In a large sam-
ple, � ! 1, so � ! 0. Difference between the energies of
two correlated pairs E2 and two single pairs 2E1 has a naive
contribution 2=� which comes from the fact that the sec-
ond pair must occupy the up and down states ("F0

þ 1=�)

just above the "F0
Fermi level. E2 � 2E1 also has a more

subtle contribution 2"c=N� where N� ¼ �� is the num-
ber of states in the potential layer from which paired
electrons are formed. This 2"c=N� contribution brings
the 2-pair correlation energy from the two single-pair value
2"c down to 2"cð1� 1=N�Þ. This decrease is induced by
the moth-eaten effect coming from the Pauli exclusion
principle between composite bosons [18]. It is better
understood by writing "c as N�"

� where "� ¼ 2�=ð1�
�Þ� is the contribution of each of the N� empty pair states
in the potential layer. When a second pair is added, the
number of states available for pairing decreases fromN� to
N� � 1; so the binding energy must decrease, due to Pauli
blocking, from N�"

� to ðN� � 1Þ"�, as we find.
The purpose of this Letter is to see how this microscopic

understanding of the Cooper pair correlation energy ex-
tends to N > 2. We here present an analytical solution of
Richardson-Gaudin equations for the energy of an arbitrary
number of up and down spin electrons paired by the BCS
potential. We find that the N-pair energy takes a remark-
ably compact form

EN ¼ NE1 þ NðN � 1Þ
�

1þ �

1� �
; (4)

within terms in ðN=�Þn free from sample volume and thus
negligible in the thermodynamic limit, in front of the two
volume linear terms of EN .

This result reduces not only to Eq. (2) forN ¼ 2 but also
to the energy obtained by Bardeen, Cooper and Schrieffer
forNBCS ¼ N�=2which corresponds to a potential extend-
ing symmetrically on both sides of the normal electron
Fermi sea. Indeed, Eq. (4) gives the condensation energy as

Eð0Þ
N � EN ¼ N"c

�
1� N � 1

N�

�
; (5)

where Eð0Þ
N ¼ 2½N"F0

þ NðN � 1Þ=2�� is the energy of N

‘‘normal’’ electrons added above "F0
, for a constant density

of states �. This condensation energy reduces to "cNBCS=2
for half-filling which is the BCS value, ��2=2, the excita-

tion gap reading as � ’ ��1=2 for small �.
Equation (4) is very astonishing at first because it looks

like the first two terms of the small N expansion of the
N-pair energy: Higher order N terms seem missing! We
have already reached these two terms in a previous work
[20] in which we analytically solved Richardson-Gaudin
equations in the very dilute limitN � Nc whereNc ¼ �"c

is the pair number over which single Cooper pairs would
start to overlap. Since this number is far smaller than the
BCS pair number N�=2, the procedure we have used to
extract the Rj’s from these equations is definitely not valid

in the dense BCS limit. Moreover, it is so demanding that
there was no hope to use it for higher orderN terms in order
to at least check that they do cancel exactly.
To prove that these higher order terms do not exist in the

large volume limit, we have constructed a totally different
procedure. We have found a way to reach the sum of Rj’s

directly, without calculating these parameters separately,
as we have done in our previous work. This is somehow
necessary because the Rj’s are 2 by 2 complex conjugate—

with one Rj real for N odd. When N increases, these Rj’s

run away from the real axis which prevents their conver-
gence for large N. By contrast,

P
jðRj � E1Þ=N� where

� � i
ffiffiffiffiffiffiffiffi
N�

p ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N=���

q
(6)

reduces to a degree-one � polynomial due to a set of
fundamental cancellations somewhat magic at first [21].
Since the analytical resolution of Richardson-Gaudin

equations for arbitrary N and V is a formidable math
problem which stayed open for 50 years, some readers
may wish to see the major steps of our procedure.
These are given in a separate section, to be skipped by a
more general audience ready to accept that we have proved
Eq. (4).
This very nice solution for a model Hamiltonian widely

used in the literature brings some interesting new light in a
field commonly considered as fully understood: it provides
a direct link between condensation energy and Pauli block-
ing, out of reach when using the usual BCS ansatz in the
grand canonical ensemble because N, then, is not a free
parameter. By rewriting the condensation energy for N

pairs given in Eq. (5) as N"cðNÞ ¼ Eð0Þ
N � EN , we find

that the average condensation energy per pair in the
N-pair configuration, is proportional to the number of
states available for pairing. Indeed, for a total number of
pairs N� in this layer and (N � 1) pair states occupied the
average condensation energy simply reads

"cðNÞ ¼ ½N� � ðN � 1Þ�"�: (7)

This evidences that the unique consequence of increasing
the number of pairs in the potential layer is to block more
and more states in this layer, until all states are occupied:
the correlation energy then reduces to zero. In the Cooper
problem, N ¼ 1 and "cð1Þ ¼ N�"

�, while in the usual
BCS configuration N ¼ N�=2 and the average condensa-
tion energy reduces to one half the single-pair value.
Equation (7) shows that Cooper pairs only ‘‘interact’’
through Pauli blocking. They can thus overlap without
breaking, in contrast to excitons which dissociate into an
electron-hole plasma through a Mott transition when over-
lap starts.
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One important consequence of Eq. (7) is that the average
pair energy cannot be identified, as is commonly done [2],
with the excitation gap much larger than the single-pair
value. The gap is the energy to break a pair. In the dense
regime, this energy is far larger than just the energy of the
broken pair due to Pauli induced many-body effects be-
tween the broken pair and the (N � 1) unbroken pairs.

Mathematical resolution of Richardson-Gaudin equa-
tions.— The energy of N up spin and N down spin elec-
trons interacting via the BCS potential of Eq. (1), reads
[9,12,22] as

P
N
j¼1 Rj where the Rj’s are coupled through

1 ¼ X
p

Vwp

2"p � Rj

þ X
k�j

2V

Rj � Rk

: (8)

We now list the major steps of our resolution.
(1) The first step is to note that the one pair energy, E1 ¼

R1, fulfills the above equation without the k sum. By
subtracting this equation from Eq. (8), we get

0 ¼ X
p

wp

Rj � E1

ð2"p � E1Þð2"p � RjÞ þ
X
k�j

2

Rj � Rk

: (9)

We then set Rj � E1 ¼ "czj and expand the sum over p as

a zj infinite series. By setting

2"nc
�ð1� �Þ

X
p

wp

ð2"p � E1Þnþ1
¼ 1� �n

nð1� �Þ � an; (10)

we find, for � defined in Eq. (3), that the zj’s fulfill

0 ¼ X1
n¼1

anz
n
j þ �

X
k�j

1

zj � zk
: (11)

(2) In a second step, we multiply the above equation by
z‘j with ‘ ¼ ð0; 1; 2; . . .Þ and we sum over j. This gives

0 ¼ X1
n¼1

anZnþ‘ þ �D‘; (12)

where the sums Zm and Dm are defined as

Zm ¼ XN
j¼1

zmj ; Dm ¼ XX
j�k

zmj
zj � zk

: (13)

The N-pair energy follows from Z1. Through the replace-
ment of zmj by ðzmj � zmk Þ=2 in Dm, it is easy to show that

D0 ¼ 0, D1 ¼ NðN � 1Þ=2, D2 ¼ ðN � 1ÞZ1, D3 ¼
ðN � 3=2ÞZ2 þ Z2

1=2, and so on. . . As Z0 ¼ N, the general
expression of Dm actually reads

Dm�1 ¼ 1

2

Xm�1

r¼0

ZrZm�1�r �m

2
Zm�1: (14)

(3) The third step is to rescale Zm as Zm ¼ N�mXm with
� defined in Eq. (6). Equations (12)–(14) then give the set
of equations fulfilled by the Xm’s as

X1
n¼1

an�
n�1Xnþ‘ ¼ 1

2

X‘�1

r¼0

XrX‘�1�r � ‘

2N
X‘�1; (15)

for ‘ � 1, with the right-hand side equal to zero for ‘ ¼ 0.
This shows that the Xm’s are � series. We write them as
Xm ¼ P

q�0xm;q�
q. Since X0 ¼ 1, we get x0;0 ¼ 1 and

x0;q�0 ¼ 0. The other xm;q’s follow from identification of

the �q terms in Eq. (15). A tedious but straightforward
calculation shows that X1 is an odd function of �

X1 ¼ ��

�
1� 1

N

�
1þ �

4
þ 1

N
X0
1; (16)

where X0
1 depends on (�, 1=N, �) as

X0
1 ¼

�
1� 1

N

�
ð1þ �Þð1� �Þ2

�
y3;0�

3 þ
�
y5;0 � y5;1

N

�
�5

þ
�
y7;0 � y7;1

N
þ y7;2

N2

�
�7 þ � � �

�
; (17)

the ym;k’s depending on � only. This leads to

EN ¼ XN
j¼1

Rj ¼ NE1 þ �cN�X1

¼ NE1 þ NðN � 1Þ
�

1þ �

1� �
þ �c�X

0
1: (18)

Since the last term scales as (�4; �6; �8; � � � ), it gives
volume free contributions to EN in ðN=�Þn with n ¼
ð2; 3; � � �Þ, in agreement with Eq. (4).
(4) The last step is to prove that all corrections to the first

two terms of EN are indeed volume free; i.e., X1 reduces to

Xð0Þ
1 ¼ ��ð1þ �Þ=4 for large volume. To do it, we re-

consider Eq. (15) without its last term

a1X
ð0Þ
‘þ1þa2�X

ð0Þ
‘þ2þa3�

2Xð0Þ
‘þ3þ���¼1

2

X‘�1

r¼0

Xð0Þ
r Xð0Þ

‘�1�r:

(19)

The Xð0Þ
m ’s, solution of this equation, are � polynomials

Xð0Þ
m ¼ xð0Þm;0 þ xð0Þm;1�þ � � � þ xð0Þm;m�m; (20)

the xð0Þm;k coefficients, defined for 0 � k � m and nonzero

for even mþ k only, being just the ones appearing in

Pnðt; �Þ ¼ 1

2nðnþ 1Þ!
dn

dtn
½ðt� �Þnðt� 1Þn� (21)

¼ xð0Þn;n þ xð0Þnþ1;n�1tþ � � � þ xð0Þ2n;0t
n: (22)

From P1ðt; �Þ ¼ �ð1þ �Þ=4þ t=2, we then find Xð0Þ
1 ¼

xð0Þ1;1� ¼ ��ð1þ �Þ=4 as we want.

The first key to check that the solution of Eq. (19) is
given by Eq. (20) is to note that Pnðt; �Þis related to the
Legendre polynomial LnðtÞ through
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Pnðt; �Þ ¼
�
1� �

2

�
n 1

nþ 1
Ln

�
2t� 1� �

1� �

�
: (23)

The orthogonality of Legendre polynomials [23] then gives

0 ¼ 1

1� �

Z 1

�
tkPnðt; �Þdt; (24)

for 0 � k � n� 1. By writing Pnðt; �Þ as in Eq. (22), it

follows from this equation that 0 ¼ xð0Þn;nakþ1 þ
xð0Þnþ1;n�1akþ2 þ � � � þ xð0Þ2n;0akþ1þn, where an is just the

scalar appearing in Eq. (10).
The second key also follows from the link between

Pnðt; �Þ and LnðtÞ. We can show that

1

1� �

Z 1

�

Pnðu; �Þ � Pnðt; �Þ
u� t

du

¼ 1

2

Xn�1

r¼0

Prðt; �ÞPn�1�rðt; �Þ; (25)

the right-hand side reducing to zero for n ¼ 0. Equation
(22) inserted into the left-hand side of Eq. (25) gives this

left-hand side as a t polynomial GnðtÞ ¼ xð0Þnþ1;n�1g1ðtÞ þ
� � � þ xð0Þ2n;0gnðtÞ where gmðtÞ depends on the aj scalars of

Eq. (10) as gmðtÞ ¼
P

m
j¼1 ajt

m�j. For n ¼ 1, this, in par-

ticular, gives G1ðtÞ ¼ a1x
ð0Þ
2;0 ¼ 1=2 since P0ðt; �Þ ¼ 1.

Using Eqs. (24) and (25), it becomes possible to show by
identification that Eq. (20) fulfills Eq. (19). Details will be
given in an extended version of this Letter.

Conclusion.— We here derive the energy of N Cooper
pairs by solving Richardson-Gaudin equations analytically
for arbitrary N and potential strength. We prove that, for
large samples, the interaction part of the N Cooper pair
energy depends on N as NðN � 1Þ only: higher order N
terms do not exist. As a result, the average Cooper pair

binding energy ðEð0Þ
N � ENÞ=N linearly decreases with pair

number from N ¼ 1 to the dense regime, [see Eq. (5)], this
energy being simply proportional to the number of empty
states available for pairing in the potential layer. As a
result, the pair binding energy cannot be identified with
the gap, as commonly done.

Our result fully supports the BCS result for the ground
state energy obtained in the grand canonical ensemble
when the potential layer extends symmetrically on both
sides of the normal electron Fermi sea. One puzzling
question still remains: Why does the BCS ansatz lead to
the exact ground state energy for N equal to half-filling
since its projection onto the N-pair subspace corresponds

to jc ðBCSÞ
N i ¼ ðByÞNjF0i with all pairs condensed into the

same state, while the exact Richardson-Gaudin wave func-
tion reads as jc Ni ¼ ByðR1Þ � � �ByðRNÞjF0i where

ByðRjÞ ¼
X
k

wk

2"k � Rj

ayk"a
y
�k#; (26)

the Rj’s being all different due to Pauli blocking, as seen

from the last term of Eq. (8)? Is this N-pair energy agree-
ment also valid for correlation functions? We hope that this
Letter will stimulate more works in connection with the
effects of the Pauli exclusion principle on paired electrons,
in a field, BCS superconductivity, commonly considered as
fully understood.
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