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We derive the coupling of a localized hexadecapolar mode to conduction electrons in tetragonal

symmetry. The derivation can be easily adapted to arbitrary multipoles in an arbitrary environment. We

relate our model to the two-channel Kondo (2CK) model and show that for an f2 configuration a relevant

crystal field splitting in addition to the 2CK interaction is intrinsic to tetragonal symmetry. We discuss

possible realizations of a hexadecapolar Kondo effect in URu2Si2. Solving our model we find good

agreement with susceptibility and specific heat measurements in Th1�xUxRu2Si2 (x � 1).
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In Ref. [1], Cox addressed important differences be-
tween U- and Ce-based heavy electron systems in terms
of the atomic structure of their f shell. The most probable
valence configuration in Ce-based systems has one f elec-
tron, whereas in many U-based materials, it is an f2-many
body state. In crystals where the U site has cubic symmetry,
f2 states can give rise to quadrupolar degrees of freedom
which, when coupled to conduction electrons, lead to two-
channel Kondo (2CK) non-Fermi liquid (NFL) behavior
[1,2]. Meanwhile, various multipolar orderings have been
observed [3] as well as proposed as candidates for ‘‘hidden
order’’ (HO) in materials with clear phase transitions but
without an obvious order parameter. A prominent example
in this area is given byURu2Si2, for which quadrupolar [4],
octupolar [5], hexadecapolar [6], and triakontadipolar [7]
order parameters have all been put forth. Some recent
experiments have ruled out quadrupolar order [8], whereas
another might implicitly hint at it [9]. On the other hand,
the hypothesis of active U hexadecapolar degrees of free-
dom explains numerous experiments [10]. In this Letter,
we generalize the work of Ref. [1] and present a simple
construction of low-energy Hamiltonians that describe the
coupling between multipoles and conduction electrons in
the tetragonal crystal field (TCF) of URu2Si2. We show
that in TCF the low-energy degrees of freedom of an f2

configuration couple symmetrically to multiple channels of
conduction electrons, regardless of the f2-coupling and -
level schemes. Taking hexadecapolar degrees of freedom
for U, and solving the resulting model with the numerical
renormalization group (NRG), we successfully describe
the properties of Th1�xUxRu2Si2 (TURS) in magnetic field
[11,12] and place the measurements around the crossover
between the local moment and 2CK scaling regimes. Thus,
hexadecapolar fluctuations can also explain the anomalies
observed in TURS.

To construct a tractable model, valid at very low ener-
gies, we take into account only the two lowest-lying 5f
configurations with double occupancy (n5f ¼ 2). This is

motivated by recent local-density approximation plus dy-
namical mean-field theory (LDAþ DMFT) calculations,

which indicate that, while U has mixed valence in URu2Si2
with 2 � n5f � 3, two TCF singlets with n5f ¼ 2 and

different symmetries have the highest probability [6].
The U degrees of freedom are then described by a J ¼ 4
multiplet, split by the TCF. The ground state and
the nearest excited level are, respectively, time reversal
and parity even, A2g and A1g basis states of the group

J �D4h. Here J � fI ;T g is the time-reversal symmetry
group, I the identity, T the time-reversal operator, and
D4h the tetragonal point group including parity. Viz., the
lowest-lying singlets are jA2gi � iffiffi

2
p ðj4i � j � 4iÞ and

jA1gi� cos�ffiffi
2

p ðj4iþj�4iÞþsin�j0i, given in terms of the

eigenvectors jJzi of the operator Ĵz in the J ¼ 4 multiplet
with the quantization axis chosen parallel to the c axis of
the crystal. To keep the equations short, we follow
Refs. [1,2] and assume the f shell of the U atom hybridizes
mostly with l ¼ 3, J ¼ 5

2 conduction electrons. Conduction

electrons at the local site c y
l J Jz

can be classified into the

four double-valued or spinor irreducible representations
(irreps), �6p, �7p of the tetragonal double point group,
�D4h, with p ¼ g=u for parity even (odd) irreps [i.e. for l
even (odd)]. Under time-reversal symmetry

T c y
l J Jz

T �1 ¼ ð�Þl�JþJz c y
l J ð�JzÞ. We set up a basis so

that the� ¼ � components of the Kramers doublets�y
�ðnÞ
jp �

(where n enumerates doublets of the same type within one
J multiplet, and j ¼ 6; 7) comply with our convention:

T�y
�ðnÞ
jpþ

T �1 ¼ �y
�ðnÞ
jp�

, implying the same for annihila-

tion operators. For the local conduction electron basis,
we choose the following two independent �7u Kramers

doublets for creation operators: ½
�y

�
ð1Þ
7u

þ
�y

�
ð1Þ
7u

�
� � ½

c y
5
2

�c y
�5
2

�, �y
�ð2Þ
7u

�

½
c y

�3
2

�c y
3
2

�, and one �6u: �
y
�ð1Þ
6u

� ½ c y
1=2

�c y
�1
2

�, on using the compact

notation: c y
Jz
� c y

3 5
2 Jz

. Adjoint doublets with the

same transformation properties in the same basis are
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�
�ðnÞ
ju �

� P
�2fþ;�g���ð�y

�ðnÞ
ju �

Þy with ��� the two-by-two

antisymmetric matrix with entry �þ� ¼ 1.
Kondo Hamiltonians are made up of spin-flip and di-

agonal processes:H K ¼ H? þH z. When constructing
these two parts connecting the two singlets, the only rele-
vant, nontrivial tensor products of irreps are �6u � �6u ¼
�7u � �7u ¼ A1g 	 A2g 	 Eg and A2g � A2g ¼ A1g [13].

Taking the appropriate tetragonal Clebsch-Gordan coeffi-
cients, symmetry thus binds the form of the spin-flip and
diagonal parts to be [13]

H? ¼ i
X2

n;m¼1

J n m
? ð�y

�ðnÞ
7u
þ��ðmÞ

7u � þ�y
�ðnÞ
7u
���ðmÞ

7u þÞ

� jA1gihA2gj þ H:c:; (1)

H z ¼
X2

n;m¼1

X

i2f1;2g
J n m i

z ð�y
�ðnÞ
7uþ

�
�ðmÞ
7u

� ��y
�ðnÞ
7u�

�
�ðmÞ
7u

þÞ

� jAigihAigj: (2)

The couplings are real and must satisfy J 1 2 i
z ¼ J 2 1 i

z to
ensure Hermiticity, but otherwise arbitrary. We omitted
processes including �6 electrons as they decouple from
the impurity. The hexadecapolar, i.e., ‘‘spin-flip,’’ fluctua-
tions are thus coupled to four species of conduction elec-
trons, namely, to the two independent �7u Kramers
doublets. H? has the structure of the 2CK model where
the role of spin index is played by the index distinguishing
the two different �7u’s, and the channels are distinguished
by the Kramers indices. To make this correspondence more

explicit, we introduce the operators ½�a"
�a#
� � ½c�3

2
c 5

2

�, �b �

½ c 3
2�c�5
2

�, and perform the unitary transformation, jA1gi !
jA0

1gi � ijA1gi, which allows us to rewrite H? in the

standard notation:H?¼J 2 1
? �J 1 2

?
2 �y

q��þ
���q�S

�þH:c:þ
OSx, with q 2 fa; bg,�; � 2 f"; #g. Here and in the follow-
ing, repeated channel (q) and spin (�; �) indices are to be
summed over,O ¼ Oy contains only conduction electrons
[14], �þ � �x þ i�y is composed of Pauli matrices, and
Sþ � Sx þ iSy � jA2gihA0

1gj, Sz � ðjA2gihA2gj � jA0
1gi�

hA0
1gjÞ=2, S� � Sþy, 1 � jA2gihA2gj þ jA0

1gihA0
1gj.

Channel symmetry follows from time-reversal symme-
try. The operator OSx is irrelevant around the 2CK fixed
point (and marginal in the free fermion scaling regime),
as shown by NRG calculations or using conformal field
theory results [15,16]. It does not destroy the 2CK state, as
it neither breaks channel symmetry nor lifts the spin de-
generacy. Thus we must have J 1 2

? � J 2 1
? for overscreen-

ing to occur. This asymmetry comes up naturally, e.g., if
we start off with a spherical symmetric Anderson
Hamiltonian, perform the Schrieffer-Wolff transformation
to arrive at a Kondo-type of interaction, and then project to

the TCF states jA2gi; jA1gi at strong spin orbit (i.e., jj)

coupling [1,2,15].
The diagonal part H z cannot lead to NFL behavior by

itself, but it can quite possibly destroy it. Channel symme-
try is preserved by time-reversal symmetry. However, the
level degeneracies are lifted by the TCF, both between the
jA2=1gi states and also in each screening channel between

�ðnÞ
7u electrons with different n’s. The dangerous terms are

H rel
zi ¼ �imp �

y
q � �q � Sz; (3)

H rel
zc ¼ �cond �

y
q � �z

� � �q � 1: (4)

Both TCF splittings are relevant around the 2CK fixed
point with scaling dimension 1

2 [15,16] and present in

H z with amplitudes �imp¼ðJ 221
z þJ 111

z �J 222
z �

J 112
z Þ=2 and �cond¼ðJ 221

z �J 111
z þJ 222

z �J 112
z Þ=4.

In fact, they are of the only type of relevant perturbation,
when channel symmetry is intact [16]. Thus for this model
to exhibit 2CK scaling in some temperature range, �imp

and �cond must fall below the Kondo temperature TK. This
necessarily requires fine-tuning, and the basic assumption
of the A2g � A1g scenario—and, as we show below, of any

other doublet-ground state scenarios—is that this acciden-
tal degeneracy is responsible for the unique behavior of
URu2Si2 among the large number of U-based heavy fer-
mions. We note that the ordinary TCF splitting�ord Sz is of
the same type, and thus has the same scaling properties

as Eqs. (3) and (4) in all scaling regimes, as �y
q� �q� is

marginal. Moreover LDAþ DMFT calculations for
URu2Si2 found �ord < TK, confirming the accidental de-
generacy on the scale of TK [6].
A local, z-directed magnetic field results in two leading

additions to the Hamiltonian: H magi / �B i ðSþ � S�Þ
and H magc / �B

P
Jz2f�3

2;�5
2g Jz c

y
Jz
c Jz 1 for the two-

singlet part and for the local conduction electrons, respec-
tively. These terms have similar effects as H rel

zi=c. Namely,

the impurity part, H rel
zi þH magi, amounts to an effective

magnetic field (or TCF splitting) pointing into other than
the z direction. The same holds true for the conduction
electrons with the effective magnetic field or TCF splitting
being different in the two channels. Thus, whileH K is not
identical to the 2CK Hamiltonian, it flows to the same fixed
point when the relevant perturbations, which split apart the
two different �7 irreps, or the two local singlets, vanish;
and the application of magnetic field thus breaks both the
channel and the spin symmetry of the 2CK model.
For the order of TCF levels in URu2Si2, other scenarios

have also been put forth in the literature. It turns out that
the structure of the effective low-energy Hamiltonian for
any two quasidegenerate states is rather similar to that of
the two-singlet case considered above. This also applies to
a proposed Eg (or �5) doublet ground state [11,17,18],

formed by jEg xi; jEg yi. Fluctuations within this doublet
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can couple to two products of irreps of l ¼ 3 electrons:
�7 � �7 and �7 � �6. In the 2CK language, the two differ-
ent irreps play the role of spin, while their Kramers indices,
connected by time reversal, play the role of channel index
again. 2CK scaling would occur down to T ¼ 0 if the two
lower-lying irreps were degenerate, i.e., if the spin sym-
metry of the 2CKmodel were unbroken. As the degeneracy
is approximate, the system will flow to a Fermi liquid (FL)
fixed point eventually.

In the HO phase of URu2Si2, the Ref. [6] proposed order
parameter, hjA2gihA1gji, is nonvanishing due to its real part
which, in highest order of the multipole expansion, con-
tains the expectation value of the hexadecapolar A2g tensor:

½ðĴ2x � Ĵ2yÞðĴxĴy þ ĴyĴxÞ þ ðĴxĴy þ ĴyĴxÞðĴ2x � Ĵ2yÞ� [6].

However, the same reasoning can be repeated for
hjEg xihEg yji, whose real part also contains the same

hexadecapolar ordering. These points are substantiated
by the Hamiltonian construction for an Eg ground state

in the Supplemental Material [19].
It has long been recognized that 	c, the (magnetic)

dipole susceptibility of Th1�xUxRu2Si2 along the c axis,
shows logT behavior at low T (see Refs. [11,18] and Fig. 1)
in accord with the 2CK descriptions corresponding to both
scenarios. However, susceptibility and resistivity measure-
ments find that the magnetic field (H) induced crossover
scale to a FL depends on H linearly, i.e., TH / H� with
� ¼ 1, which does not agree with the � ¼ 2 behavior
corresponding to the 2CK scaling regime [12]. To make
contact with these experiments, we solved the model,
Eq. (1), by NRG and confirmed that it indeed flows to
the 2CK fixed point where OSx is irrelevant. Then we
added a magnetic field, mimicked only by Eq. (3), to the
2CK model, and solved this model using an upgraded
version of our density matrix-NRG code [20]. The values
of the magnetic field and the Kondo coupling were
adjusted to fit the experimental data of Refs. [11,12].

Invoking !=T scaling [21], we fitted the T dependence
of 	c by the real part of the dynamic susceptibility of the
2CK model in magnetic field, as we trust our dynamic
correlation functions (produced by the density matrix al-
gorithm at T ¼ 0) better than the thermodynamic quanti-
ties. Figure 1 shows convincing agreement between theory
and experiment apart from the small discrepancy for
T > 30 K, i.e., for large energies where the resolution of
NRG is limited. We obtained TK 
 1:3 K from the fit
(see the caption of Fig. 1 for further details on TK). This
finding places the measurements in magnetic fields around
the crossover region between the local moment and 2CK
scaling regimes. In both regimes, scale invariance entails
the hyperscaling relation, �þ � ¼ 2 with � the critical
exponent defined by 	 / H��. Thus for H ¼ 0, the ob-
served � ¼ 0 gives� ¼ 2; i.e., for T between 0.1 and 10 K,
the system is in the 2CK scaling regime. In contrast, for
H ¼ 1–5 T, the experiments measure � ¼ 1 resulting in
� ¼ 1. Thus, we conclude that these magnetic fields, in

addition to the ubiquitous, relevant TCF splitting, are
(slightly) larger than TK and the system flows directly
from the local moment regime to a one-channel Kondo
fixed point without traversing the 2CK scaling regime. In
Fig. 1(a), the ratios of magnetic fields to TK, fitting the
susceptibility, further illustrate this point.
By taking a closer look at the specific heat coefficient in

Fig. 2(a), we can reinforce these statements and get another
estimate for TK. Two regimes for the given magnetic
field values are clearly visible: At low T’s, the curves for
H ¼ 0:5 and 1 T slightly overshoot the curve at H ¼ 0 T,
in contrast to the curves for H � 2 T, which exhibit a
bump at T 
 H. The rise of 
 � Cp;5f=T for low fields

at low T is reminiscent of the 2CK scaling regime, except
that the measured T dependence of 
 at low T forH ¼ 0 is
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FIG. 1 (color online). (a) Symbols: Molar susceptibility 	mol
c;5f

of the 5f electrons in Th1�xUxRu2Si2 at x ¼ 0:03 vs T in
magnetic fields between H ¼ 0 and 5 T (H k c) reproduced
from Ref. [12]. (a),(b) Curves: The real part of the local,
dynamic susceptibility of the 2CK model in the presence of
magnetic field at T ¼ 0 computed with density matrix-NRG at
Kondo coupling J 2CK ¼ 0:15D (in units of bandwidth) with
discretization parameter � ¼ 2 and keeping at most 2100 mul-
tiplets of Uð1Þspin � SUð2Þcharge1 � SUð2Þcharge2 at each NRG

step [20]. (c) The crossover scale TH [defined as the intersect
of the low-! and high-! asymptotes of Re	ð!Þ, see plot (b)]
shows quadratic and linear H dependence in the 2CK and local
moment scaling regimes, respectively; TK , the crossover scale
between the local moment and 2CK scaling regimes, is
 1:3 K.
Notice that the experimental data for H ¼ 0 T can be fitted
equally well with every NRG curve where H & 0:2TK.
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not quite logarithmic. These findings can be explained by
the presence of an effective TCF splitting, 0<�< TK,
already atH ¼ 0, and placing TK between 1 and 2 T. From
the susceptibility fit we estimate that � is anywhere below
about 0:2TK [cf. Fig. 1(b)]. These assertions are further
confirmed by our NRG calculations for the specific heat
coefficient [see Fig. 2(b) and cf. Ref. [22]). For H > TK,
the bumps at T 
 H correspond to the Schottky anomaly
due to the Zeeman splitting between the two local states.

In the 2CK model, if �< TK, there is a NFL region

over 2 logðTK

� Þ decades, since the splitting induced crossover
scale to a Fermi liquid depends on � quadratically.
Susceptibility measurements find a NFL region over at least
one decade, putting an upper bound on the ratio�=TK < 0:6
and giving the conservative estimate TK < 5 T and
�< 3 T.

Conclusions.—Motivated by recent findings on the elec-
tronic structure of URu2Si2 [6], we derived the Kondo
coupling between localized hexadecapolar fluctuations
and conduction electrons in TCF. The derivation can easily
be adapted to arbitrary situations, as further illustrated in
the Supplemental Material [19]. In each case, the local
degrees of freedom are symmetrically coupled to two
different irreps of conduction electrons. The coupling has
the form of the 2CK model plus relevant, spin symmetry
breaking perturbations present even in zero magnetic field.
Solving the model with NRG we showed that the hypothe-
sis introduced in Ref. [6] to describe the HO in URu2Si2
can consistently account for the behavior of TURS.
Nonetheless, this behavior does not discriminate between
different competing scenarios for the ground state–excited
state sequence in this material. As there are always two
irreps of conduction electrons involved in the coupling, and

they are not connected by symmetry, we expect a FL to
emerge at sufficiently low T’s. Hence the intermediate
NFL regime, observed in URu2Si2, is a result of accidental
degeneracy, and is responsible for the unique properties of
this compound in the dilute and dense limits, among the
hundreds of known U-based heavy fermions. We found
that the scale of the TCF splitting and TK is smaller in
TURS than in URu2Si2 [6]. The splitting between the two
�7 irreps should be sensitive to the conduction electron
filling, and we expect it to be larger in La1�xUxRu2Si2
where clear FL behavior is observed [23]. In this context it
is also worth pointing out that, in TURS, the resistivity
follows an approximate logT behavior with a negative
coefficient suggesting a crossover to FL behavior at suffi-
ciently low T’s. The study of the resistivity, however, will
likely require a more realistic model for TURS including
all bands present in the solid, and also a more sophisticated
approach to calculating the resistivity in NFL quantum
impurity models than the ones presently available [24].
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