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Dynamical heterogeneities—strong fluctuations near the glass transition—are believed to be crucial to

explain much of the glass transition phenomenology. One hypothesis for their origin is that they emerge

from soft (Goldstone) modes associated with a broken continuous symmetry under time reparametriza-

tions. To test this hypothesis, we use numerical simulation data to construct coarse grained observables

and decompose their fluctuations into two transverse components associated with the postulated soft

modes and a longitudinal component unrelated to them. We find that as temperature is lowered and time

scales are increased, the time reparametrization fluctuations become increasingly dominant, and that their

correlation volumes grow together with those of the dynamical heterogeneities, while the correlation

volumes for longitudinal fluctuations remain small.
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For systems in the vicinity of the glass transition, experi-
ments and simulations have shown the emergence of
spatially heterogeneous dynamics (SHD): mesoscopic
regions relax either much faster or much slower than
neighboring regions [1–8]. SHD is believed to be crucial
to the understanding of nonexponential relaxation, the
breakdown of the coupling between translational diffusion
and viscosity, and even possibly the slowdown of the
dynamics itself [1,2]. The origin of SHD is still uncertain,
in part because of the lack of direct microscopic tests to
attempt to disprove proposed theories [6,9–11]. Here we
apply one such test [12] for the hypothesis that SHD is
associated with fluctuations in the time variable [11,13,14],
and find that our molecular dynamics data are consistent
with the hypothesis. This test can also be applied to particle
tracking experimental data in colloidal [4] and granular
systems [8], thus allowing to investigate a possible unified
explanation of SHD in diverse systems. Our results high-
light that nontrivial correlation functions in the time
domain contain useful information for the understanding
of SHD.

As a glass-forming liquid approaches the glass transi-
tion, its relaxation time and viscosity grow by many orders
of magnitude, until the system can no longer equilibrate in
laboratory time scales; i.e., it has entered the glass state [1].
In equilibrium, the correlation function Cðt; twÞ between
the states of the system at the waiting time tw and the final
time t depends only on t� tw, but if the system is out of
equilibrium, it may display aging, i.e., a nontrivial depen-
dence on both t and tw. Dynamical heterogeneity can be
probed by defining a coarse grained local two-time corre-
lation Crðt; twÞ, which probes how much each individual

region of the sample has changed between time tw and time
t. ‘‘Fast regions’’ have small values of Crðt; twÞ and ‘‘slow
regions’’ have values of Crðt; twÞ closer to 1. Thus the
fluctuations of Crðt; twÞ represent the dynamical heteroge-
neity, and theories attempting to explain SHD should be
able to explain those fluctuations. One of the proposed
mechanisms for the origin of dynamical heterogeneity
postulates that they are associated with local fluctuations
in the time variable [11,13–19], t ! hrðtÞ, i.e.

Crðt; twÞ ¼ CðhrðtÞ; hrðtwÞÞ; (1)

where Cðt; twÞ � Cglobalðt; twÞ is the global two-time corre-

lation. This proposal originated in analytic calculations in
spin glass models in the long time limit that showed the
presence of a broken continuous symmetry under repara-
metrizations of the time t ! hðtÞ [13,16], which should
give rise to the presence of Goldstone modes as described
by Eq. (1). Indirect evidence in favor of the presence of this
kind of fluctuation in atomistic models of glasses has been
presented in [15,17–19]. In the present work, we introduce
a more direct test, based on decomposing fluctuations into
a transverse part satisfying Eq. (1) and a longitudinal part
containing all other fluctuations [20]. This procedure al-
lows one to separately quantify the strength and spatial
correlations of both kinds of fluctuations, as a function of
temperature and time scales, for a variety of glass-forming
models, and is easily applicable to experimental data in
glassy colloidal and granular systems.
To probe fluctuations in structural glasses, we use [15]

Crðt; twÞ ¼ 1
NðBrÞ

P
rjðtwÞ2Br

cosðq � ½rjðtÞ � rjðtwÞ�Þ. Here

rjðtÞ is the position of particle j at time t, Br denotes a
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small coarse graining box around the point r, and the sum
runs over the NðBrÞ particles present in the coarse graining
box at the waiting time tw. The global correlation function
Cðt; twÞ, defined by extending the average to all of the N
particles in the system, is the self part of the intermediate
scattering function. We have chosen the wave vector q to
be at the main peak of the static structure factor SðqÞ for
each system. We performed classical molecular dynamics
simulations of systems of N particles (1000 � N � 8000)
that were equilibrated at high temperature Ti � Tg, then

instantaneously quenched to a final temperature T and
allowed to evolve for times several orders of magnitude
longer than their typical vibrational times [15,17–19]. We
generated eight data sets by simulating four atomistic
glass-forming models [21]: an 80:20 mixture of particles
interacting via Lennard-Jones (LJ) potentials [15,22] (data
set C), an 80:20 mixture of particles interacting via purely
repulsive Weeks-Chandler-Andersen (WCA) potentials
[19] (data sets D-H), and short (10-monomer) polymer
systems [17] interacting via either LJ potentials (data set
A) or via WCA potentials (data set B). Nearest neighbors
along the polymer chains are held together by FENE
anharmonic spring potentials [17]. The ratio of the final
temperature T to the Mode Coupling critical temperature
Tc [23] was T=Tc � 0:9 for data sets A-D, T=Tc ¼ 1:10
for data sets E-F and T=Tc ¼ 1:52 for data sets G-H. For
data sets F and H, the samples were in equilibrium, but for
all the others the samples were aging. Each data set in-
cludes between 100 and 9000 independent runs with the
same parameters.

To test the hypothesis given by Eq. (1), we will use the
fact that for our data [24]:

Cðt; twÞ � fðhðtÞ=hðtwÞÞ; (2)

where f can be fitted with a form such that Cðt; twÞ reduces
to a stretched exponential in the equilibrium case: fðxÞ ¼
qEA expf�½lnðxÞ=�0��g [25]. Here, qEA,� and �0 are fitting
parameters that vary little from one data set to another.
However, the dependence of the � relaxation time � on tw
is quite different in the different systems we consider [26],
and this leads to different forms for hðtÞ [24]: for aging
polymers hðtÞ ¼ exp½ln�ðt=t0Þ�, for aging particles hðtÞ ¼
exp½ðt=t0Þ��, and in equilibrium hðtÞ ¼ expðt=t0Þ. We de-
fine�ab � f�1½Cðta; tbÞ�, with a; b 2 f1; 2; 3g. If Eq. (2) is
satisfied, we have �ab � hðtaÞ=hðtbÞ, and we therefore
obtain a triangular relation [24] �13 � �12�23. In terms

of the variables X � �23=
ffiffiffiffiffiffiffiffi
�13

p
and Y � �12=

ffiffiffiffiffiffiffiffi
�13

p
,

this leads to the prediction that 1 � XY, which is satisfied
to a good approximation for all times and all of our data
sets [26].
By using Eq. (2), we now reexpress our hypothesis,

Eq. (1), in the form Crðt; twÞ ¼ fðhrðtÞ=hrðtwÞÞ. We
now define �ab;r � f�1½Crðta; tbÞ�, with a; b 2 f1; 2; 3g,
Xrðt1; t2; t3Þ � �23;r=

ffiffiffiffiffiffiffiffiffiffiffi
�13;r

p
and Yrðt1; t2; t3Þ � �12;r=ffiffiffiffiffiffiffiffiffiffiffi

�13;r

p
, whose fluctuations also encode the properties of

the dynamical heterogeneities. If the hypothesis in Eq. (1)
is satisfied, then 1 ¼ XrYr; i.e., the relation holds locally
not just globally. Since time reparametrization symmetry
is a long time asymptotic effect associated with glassy

FIG. 1 (color online). 2D contours of constant joint probability density �ðXr; YrÞ ¼ �ð�23;r=ð�13;rÞ1=2;�12;r=ð�13;rÞ1=2Þ, computed
using coarse graining boxes containing 125 particles on average. Each set of three concentric contours is chosen so that they enclose
25%, 50% and 75% of the total probability. Each panel from A to H contains results from the corresponding data set, for ðX; YÞ �
ð0:80; 1:25Þ, (1.00, 1.00), and (1.25, 0.80), with the times chosen as late as possible within each data set. The global values (Xðt1; t2; t3Þ,
Yðt1; t2; t3Þ), for all times t1 > t2 > t3 in each data set, are shown with red points.
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behavior, we expect that as the temperature becomes lower,
the time scales become longer, and the system becomes
more glassy, the probability distribution �ðXr; YrÞ should
become anisotropic, and extend mostly in the direction of
the global curve 1 ¼ XY and not away from it. In other
words, if we decompose the fluctuations representing the
dynamical heterogeneity into longitudinal and transverse
variables [20], the fluctuations of the longitudinal variable
�r � 1ffiffi

3
p lnð�12;r�23;r=�13;rÞ ¼ 1ffiffi

3
p lnðXrYrÞ should be-

come weaker than the fluctuations of the transverse
variables �1r � 1ffiffi

2
p lnð�12;r=�23;rÞ ¼ 1ffiffi

2
p lnðYr=XrÞ and

�2r � 1ffiffi
6

p lnð�12;r�23;r�
2
13;rÞ.

In Fig. (1) we show our results for �ðXr; YrÞ. Because we
are trying to detect collective fluctuations, we coarse grain
over moderately large regions, containing on average
125 particles. For each data set, we find three triads of
times t1 > t2 > t3 such that ðXðt1; t2; t3Þ; Yðt1; t2; t3ÞÞ �
ð0:8; 1:25Þ, (1.00, 1.00), and (1.25, 0.80), respectively.
For each data set and time triad, we show three contours
of constant probability density �ðXr; YrÞ, respectively, en-
closing 25%, 50%, and 75% of the total probability. For
data sets A-D, with T=Tc � 0:9, the contours indeed follow
the curve 1 ¼ XY. This is more noticeable for the 25%
contour, which encloses the most likely fluctuations, than
for the 50% and 75% contours, which additionally include
rarer events. For data sets E and F, corresponding to
T=Tc ¼ 1:1, the contours are still anisotropic and oriented
along the direction of the global curve, but less so than in
A-D, while for G and H, corresponding to T=Tc ¼ 1:5 the
fluctuations away from the global curve are the strongest.
For the higher temperatures, we find that the contours
obtained in the aging regime (F, H) are similar to the
ones obtained in the equilibrium regime (E, G) at the
same temperatures [19]. These results can be directly con-
nected to the fact that, as the temperature is increased, the
separation of time scales is less pronounced, the finite time
corrections to the time reparametrization symmetry be-
come larger, and the effect of local time variable fluctua-
tions become weaker.

We now turn to a more quantitative analysis of the
connection between the transverse fluctuating variables
�1r, �2r, the longitudinal fluctuating variables �r, and
the dynamical heterogeneity. A more detailed version of
this analysis will be presented elsewhere [26]. Here we
report results for fixed Cðt1; t3Þ ¼ 0:23, but similar results
are obtained for other values of Cðt1; t3Þ [26]. In the top
panel of Fig. 2 we show the ratio between the variances
of the local transverse and longitudinal fluctuations as a
function of �4;Cðt1;t3Þ [6,18,27], which quantifies the

strength of the dynamical heterogeneities. Similarly, in
the bottom panel of Fig. 2 we plot the ratio between
the correlation volumes [27] of transverse and longitudinal
fluctuations as a function of �4;Cðt1;t3Þ. In both cases, we

find that there is an anisotropy in favor of the transverse
fluctuations, which grows as the strength of the dynamical

heterogeneity increases. In particular, both ratios grow
as the temperature is decreased, and in the case of systems
in the aging regime, both ratios grow as the system
relaxes, since �4;Cðt1;t3Þ is a growing function of tw at fixed

Cðt1; t3Þ [18].
Our hypothesis is that the dynamical heterogeneity

originates in the Goldstone modes associated to fluctua-
tions in the time reparametrization, as described by
Eq. (1). We thus expect that the correlation length of the
dynamical heterogeneity should be similar to the correla-
tion lengths of the transverse variables �1 and �2, and
that the longitudinal variable � should be short-range
correlated. In Fig. 3, we show that this is indeed the
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FIG. 2 (color online). Anisotropy ratios between transverse
and longitudinal fluctuations, plotted as functions of �4;Cðt1;t3Þ �
�4ðt1; t3Þ [6,18], which measures the strength of the dynamical
heterogeneity. Plotted for all data sets and all times consistent
with Cðt1; t3Þ ¼ 0:23 and Cðt1; t2Þ ¼ Cðt2; t3Þ. Top panel: Ratio
between the variances of the transverse and longitudinal fluctua-
tions. Bottom panel: Ratio between the correlation volumes [27]
of the transverse and longitudinal fluctuations.
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case: the normalized correlation volumes [27] V�1
, V�2

for

the transverse fluctuations are approximately proportional
to those for the dynamical heterogeneities, VC13

, and, in

particular, they grow as the temperature is reduced or as
aging systems relax. By contrast, the normalized correla-
tion volume for longitudinal fluctuations V� is essentially
constant for all systems, temperatures and time regimes,
and approximately equal to unity, indicating that the spatial
correlations of the variable � do not extend beyond the
coarse graining region.

In conclusion, we have applied a stringent microscopic
test for the hypothesis that dynamical heterogeneity in
structural glasses is associatedwith the presence of spatially
correlated fluctuations in the time variables, and we
have found that all our results are consistent with this
hypothesis. We have used data from molecular dynamics
simulations of atomistic systems to apply the test, but
the same procedure can be applied to particle tracking
data from colloidal [4] and granular systems [8], and slight
modifications would allow the study of light scattering
[7] or dielectric noise [5] data. This opens the door to
investigating the possibility of a unified theoretical expla-
nation of dynamical heterogenity for molecular liquids,
colloidal liquids, and granular systems. Our results high-
light the advantages of studying dynamical heterogeneity
by probing fluctuations of regions of the system, rather
than probing individual particle fluctuations, since the
latter will necessarily contain both collective and noncol-
lective components that are difficult to separate cleanly.

They also highlight the fact that more complex correla-
tions in the time domain contain information that is
useful for the understanding of heterogeneous dynamical
behavior.
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