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We present a general scheme for the study of frustration in quantum systems. We introduce a universal

measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones

via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then

the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system

to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a

generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The

models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject

to frustration of purely quantum origin. Our results therefore establish a unified framework for studying

the intertwining of geometric and quantum contributions to frustration.
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Frustration consists in the impossibility of determining
configurations that minimize simultaneously the energy of
competing interactions [1–3]. In recent years it has been
realized that classically unfrustrated systems can have
frustrated quantum counterparts [4–7]. Indeed, in the quan-
tum case, additional sources of frustration may arise due to
noncommutativity and entanglement [5,8]. Hence,
although the notion of frustration has often been consid-
ered from the perspective of statistical physics, in the
quantum domain interesting novel phenomena take place
even in the presence of few entangled elements [5,8,9]. It is
however far from clear how to distinguish geometric from
purely quantum frustration and whether the distinction is
free of ambiguities. To the best of our knowledge this issue
has never been addressed. Moreover, despite frustration
being a well-defined and intuitive concept, a measure for
quantum systems which fully captures all its aspects is still
lacking. Existing proposals for quantifying frustration in
quantum systems focus on particular aspects of the phe-
nomenon. Some proposals are based on classical equiva-
lents of a given quantum system [10], making it impossible
to recover information about quantum correlations. Others
apply only in the thermodynamic limit [11,12], or on the
competition between local and nonlocal interactions from
a purely quantum perspective [5], thus making it challeng-
ing either to study finite-size systems or to understand the
transition to classically frustrated systems. The need for a
systematic investigation of this issue at a foundational level
is thus quite compelling. Even more so, as quantum sim-
ulators of classical as well as quantum frustrated magnetic
systems, at least in the simplest Ising and J1-J2 cases, are
being demonstrated with ultracold atoms in optical lattices
[13,14] and trapped ions [15], or proposed, e.g., with cold
Coulomb crystals [16]. Furthermore, such an investigation
would be of great help and guidance for the design of

entanglement-based numerical simulations of frustrated
quantum spin models [17].
The aim of this work is to introduce a universal measure

of frustration for quantum systems and define a unified
framework suitable to understand the intertwining of the
geometric and quantum contributions to frustration. To this
end we focus on the microscopic properties of finite-size
models from a purely quantum perspective without resort-
ing to semiclassical approximations. After introducing a
universal measure of frustration, we prove that it is an
upper bound to a class of entanglement monotones that
in particular cases reduces to the bipartite geometric en-
tanglement. We then establish sufficient conditions for a
quantum spin system to saturate the bound and support
themwith extensive strong numerical evidence. Finally, we
show how these conditions essentially generalize to the
quantum domain the Toulouse criterion for frustration-free
classical systems.
Consider a system in a pure state � ¼ jc ihc j, and let�

be the projector onto a given subspace. Then

f ¼ 1� tr½���; (1)

quantifies how much � fails to fully overlap with the sub-
space selected by �. Let now � ¼ jGihGj be the ground
state (GS) of a many-body system H ¼ P

ShS and �S the
projector onto the GS of the local interactions hS corre-
sponding to subsystem S. Then fS ¼ 1� tr½��S� is a
well-defined and unambiguous measure of the frustration
of hS. On the other hand, denoting by R the rest of the
system, consider the following entanglement monotone:

EðdÞðSjRÞ ¼ 1�Xd

i¼1

�#
ið�SÞ; (2)

where �#
ið�SÞ are the eigenvalues of �S ¼ trR� in decreas-

ing order and d < dim½H S�, withH S the Hilbert space of
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S. Notice that EðdÞðSjRÞ ¼ EðdÞðRjSÞ. The right-hand side
of Eq. (2) vanishes only on states with a Schmidt rank
smaller or equal than d [18]; for d ¼ 1 it reduces to the
bipartite geometric entanglement, defined as the distance
from the set of biseparable states [19]. Fix now d to be the
degeneracy of the local interaction hS (i.e., � is rank-d).
Then, by the Cauchy interlacing theorem (see also
Lemma 1 in the Supplemental Material [20]) it follows that

fS � EðdÞ
S ; (3)

where EðdÞ
S � EðdÞðSjRÞ is the distance from jGi to the

closest state with Schmidt rank r � d [18].
Despite its apparent simplicity, Eq. (3) has the remark-

able feature of directly relating frustration to entanglement.
This quantitative relation holds for any pure state � and any
interacting quantum system and hence is universal.
Actually, Eq. (3) holds as well for any mixed state,

although in this case EðdÞ
S is no longer an entanglement

monotone. An immediate consequence of Eq. (3) is that the
frustration-free condition, fS ¼ 0 8 S is a bound on the
maximum Schmidt rank of the global ground state jGi. For
interactions hS with nondegenerate local GSs jGSi, d ¼
1 8 S, this implies the separability of the global GS in the
tensor product of the local GSs: jGi ¼ N

SjGSi. That the
absence of frustration should be related to some form of
factorization of the GS had already been observed, at a
semiquantitative level, for models in transverse fields [6].

On the other hand, saturation of the inequality, fS ¼ EðdÞ
S

for some S, imposes a block-diagonal form of the reduced

state �S, with eigenvalues �#
ið�Þ; i ¼ 1; . . . ; d correspond-

ing to the block spanned by � (see Lemma 1 in [20]).
Hence �S cannot exhibit coherence between the lowest and
excited energy levels of hS: the largest contribution to �S

must come from the local ground subspace.
Summarizing the above discussion, we can state that a

GS � ¼ jGihGj of a many-body Hamiltonian of the form
H ¼ P

ShS is a frustration-free (FF) state if and only if
fS ¼ 0 8 S, and is an inequality saturating (INES) state if

and only if fS ¼ EðdÞ
S 8 S. Clearly, a FF state is also an

INES state. A Hamiltonian H is then a FF Hamiltonian if
all its GSs are FF states, and is an INES Hamiltonian if all
its GSs are INES states. In general, it is easy to show that
states with at least one fS > 0 have higher energy com-
pared to the corresponding FF state. Hence, if a model is
globally degenerate and one global GS is a FF state, then
this is true for all other GSs. Unlike the FF property, the
INES property is not universal; i.e., it does not necessarily
apply to all the GSs of a system. This is due to the fact that
unlike the FF property, the INES property does not specify
the GS energy. Total frustration F can then be defined by
averaging over all the local measures fS.

We will now exploit Eq. (3) to generalize the classical
criteria for the absence or presence of frustration to the
quantum domain and to understand the intertwining of
geometric and purely quantum contributions to frustration.

According to Toulouse [Formulation 1]: A classical
Hamiltonian H is frustrated if and only if it is impossible
to transform H into a fully ferromagnetic Hamiltonian by
means of local spin inversions. This occurs only when a
closed loop exists with an odd number of antiferromagnetic
interactions [1,2,4]. Indeed, the Toulouse criterion com-
putes exactly the parity of antiferromagnetic bonds on a
closed loop, according to [Formulation 2]: For a given
Hamiltonian a loop is frustrated if the quantity P ¼
ð�1ÞNaf ¼ �1, where Naf is the number of antiferromag-

netic bonds. Next, consider the simplest quantum exten-
sion of classical models, the quantum Ising model
H ¼ P

i<jJijS
z
iS

z
j (d ¼ 2). Clearly, the model is unfrus-

trated if the GS is of the form jc i ¼ N
N
i¼1ðSxi Þ�i �

ð�j "" � � �i þ �j ## � � �iÞ, with �i ¼ 0, 1. Indeed, in this

case fij ¼ Eð2Þ
ij ¼ 0 8 S � ij, and Eq. (3) is saturated by

all GSs. On the contrary, if the model is frustrated there
exists at least one GS which is not an INES state. In fact, all

separable GSs exhibit Eð2Þ
ij ¼ 0 on all pairs and fij > 0 on

at least one pair. Therefore, in terms of Eq. (3), the imme-
diate extension to the quantum Ising case of the Toulouse
condition is [Formulation 3]: A quantum Ising
Hamiltonian is frustrated if and only if it is not an INES
model. Although the Ising model does not contain quantum
features, such as noncommutativity of the local interac-
tions, and therefore can only exhibit geometric frustration,
the possibility of restating Toulouse criterion in terms of f

and an entanglement monotone Eð2Þ
S is remarkable as it

provides the first bridge between the classical and the
quantum domains.
From the Ising example we learn that in the quantum

domain the relevant information to detect frustration is the
existence of GSs not being INES states, rather than that of
GSs not being FF states. This is because for quantum
systems frustration arises not only from topological con-
straints (so-called geometric frustration) but as well from
purely quantum ones. Consider the following classically
unfrustrated Heisenberg Hamiltonian for four spins on an
open chain: H ¼ P

iSi � Siþ1, where Si ¼ ðSxi ; Syi ; Szi Þ, d ¼
1 and the global GS of H is nondegenerate. The quantum
version of this model is frustrated, as in the GS the total

measure of frustration F ¼ N�1
P

ijfij ¼ 1
6 ð3�

ffiffiffi
3

p Þ,
where N ¼ 3 is the number of bonds. Remarkably, the
frustrated GS is an INES state;, hence, the frustrated
model is still an INES model, in contrast to what occurs
in the Ising case. Let us now add to H some geometric

frustration, i.e.,H0 ¼ H þP
iSi � Siþ2. Now one has fij ¼

2=5> Eð1Þ
ij ¼ 1=3 8 ðijÞ, and hence the frustrated GS is

not an INES state. Indeed, the Ising model can only exhibit
geometric frustration, even in its quantum version, as the
local GSs are always unentangled. On the contrary, the GS
of each Heisenberg local pair term is a maximally en-
tangled Bell state. Accordingly, the model can either be
an INES model or not, depending on the topology of the
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system. Actually, even if geometric frustration is absent,
yet monogamy of entanglement [21] prevents the global
GS from minimizing all the local terms, and the model is
both frustrated and INES. This strongly suggests that fail-
ure to saturate Eq. (3) is a signature of the presence of
geometric frustration.

From the above discussion it follows that it would be
highly desirable to identify conditions detecting a priori
the nature of the frustration in a given quantum system.
Considering hereafter only models with nondegenerate
global GS, we approach the problem by observing that
the classical Toulouse condition contains two main ingre-
dients: a ferromagnetic model, which serves as the proto-
type of FF models, and a gauge group under which the FF
property is preserved. We thus look for a prototype INES
model and a gauge group under which the INES property is
preserved. To fix the stage, consider the general XYZ
(Heisenberg) exchange Hamiltonian

H ¼ X

ij

hij ¼ �X

ij;�

J
�
ijS

�
i S

�
j ; (4)

where� ¼ x, y, z, with coupling vectors ~Jij ¼ ðJxij; Jyij; JzijÞ
on arbitrary graph geometries.

Prototype model.—A nondegenerate quantum
Hamiltonian as in Eq. (4) will be called a prototype if
(1a) there exists at least one local GS common to all local
pair interactions hij’s, and (1b) each local coupling vector
~Jij has non-negative components (i.e., it is a full ferromag-

net: J�ij � 0 8 i, j,� and there exists a common two-body

state vector j�i which is ground state of all hij).

[Conjecture 1.]: All prototype models are INES.
Note the remarkable parallelism between condition (1a)

and the FF condition, which essentially requires the exis-
tence of at least one global GS common to all hij’s. From

our conjecture, it follows that if d ¼ 1 then all hij’s must

admit the same Bell state as GS. Since the GS of a given hij
with positive ~Jij is determined by the lowest value compo-

nent of the vector, it follows that it must be along the same

axis for all ~Jij in the prototype model. Any model obtained

from the prototype by means of tensoring local unitary
operations is clearly still an INES model with the same set

of fij and EðdÞ
ij ’s. In fact, one has [Conjecture 2.]: Any

model H0 ¼ HTK which can be obtained from a prototype
model H by partial transposition on any set of sites K is
still an INES model.

Applying partial transposition [22] to a prototype

Hamiltonian changes fij and EðdÞ
ij ; however, saturation of

Eq. (3) is preserved. Although an analytical proof of these
conjectures appears challenging, in the Supplemental
Material [20] we provide compelling numerical evidence
of their validity. This is a very significant result, as it
implies that not only local rotations but also partial trans-
positions do preserve the INES property. It is not a priori
obvious that this would be the case, since, as already noted,

both sides of inequality (3) are typically changed by a
partial transposition. Indeed, partial transposition is inti-
mately related to parity, as PkðHÞ ¼ SykH

TkSyk, where Pk is

the parity transformation on site k [PðSÞ ¼ �S]. Thus,
according to Conjecture 2, the local gauge group is G ¼
SUð2Þ � Z2. An element of SUð2Þ acting on S� is repre-
sented by a transformation R 2 SOð3Þ, whereas a parity
transformation is simply �1. Hence, spin operators trans-
form according to the Oð3Þ representation of G, and a
local gauge transformation g ¼ N

igi (with gi 2 G)
maps two-body interactions

P
��J

��
ij S

�
i S

�
j intoP

��½R>
i JijRj���S�i S

�
j . Given a general XYZ

Hamiltonian H ¼ �P
ij

P
� J

�
ijS

�
i S

�
j , we derive necessary

and sufficient conditions for H to be equivalent to a pro-
totype model under the action of some g 2 G�N . Consider
two sites a and b and let pða ! bÞ ¼
fða; i1Þ; ði2; i3Þ; . . . ; ðik; bÞg be any path from a to b, where
all pairs ði; jÞ 2 p interact. Define the sign of the path p as

	ðpða ! bÞÞ ¼ Y

ði;jÞ2p

diagðsxij; syij; szijÞ; (5)

where s
�
ij ¼ sgnðJ��

ij Þ and we define sgnð0Þ ¼ 1, with the

product taken over all adjacent pairs ij belonging to the
path pða ! bÞ. Note that 	ðpða ! bÞÞ ¼ 	ðpðb ! aÞÞ.
We state the following. [Theorem] Necessary and sufficient
conditions for a Heisenberg Hamiltonian H to be mapped
into a prototype model by a local gauge transformation are

(2a) All coupling vectors ~Jij, have the smallest absolute

value component along the same axis; (2b) For any pair of
spins a and b, 	ðpða ! bÞÞ is independent of the path p
from a to b. As shown in the Supplemental Material [20],
condition (2b) guarantees that the system can be brought to
a fully ferromagnetic system. When this condition is met,
the dependence of 	 on the path can be dropped. Then one
can consider 	ða ! bÞ as a ‘‘conservative field’’ which
dictates the local transformation that has to be applied in b
so that the sign of any path from a to b is positive. If this
holds for all b, one can turn all the couplings to positive by
means of local transformations. On the other hand, condi-
tion (2a) is related to the existence of the same Bell state as
the common ground state of all the two-body interactions.
A remarkable simplification occurs when the system is
translationally invariant. In that case: [Theorem] If a model
satisfies	ð‘Þ ¼ þ1, for every loop ‘ in the elementary cell
and all coupling vectors have the smallest component
along the same axis, then it is an INES model (Proof in
the Supplemental Material [20]). This theorem encodes in
compact form three of Toulouse’s criteria, one for each
spatial direction. This strongly suggests that the class of
INES models defined by conditions (2a) and (2b) can be
identified as that of geometric frustration-free spin-1=2
quantum models. Our analysis reveals that the quantum
nature of the model affects the very notion of geometric
frustration. Condition (1a) or equivalently (2a) is a
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consequence of the existence of three inequivalent ferro-
magnetic states, i.e., the triplet states. This constraint,
however, is only relevant in systems with inhomogeneous
couplings. Otherwise, conditions (2a) and (2b) simply
reduce to a generalized form of Toulouse’s criterion.
Being the class of geometric frustration-free quantum sys-
tems more restrictive than its classical analogue, one may
expect that further investigation reveals generic properties
which so far failed to be properly generalized.

On the other hand, the class of geometric unfrustrated
quantum systems is strictly larger than that of frustration-
free systems. A deeper investigation of geometric FF
quantum models might thus unveil several relevant appli-
cations. For example, the largest eigenvalues of �ij iden-

tified by�ij may provide guidelines for designing optimal

entanglement renormalization algorithms and other tensor
network ansatz [23]. Moreover, the measure of frustration
that we have introduced and its relation to geometric
entanglement is not restricted to local two-body
Hamiltonians or spin-1=2 systems and might be exploited
to gain understanding of geometric frustration in arbitrary
quantum many-body systems.

According to our results, the INES class of models is
larger than that of geometric FF models, thus suggesting
that the INES property has deeper implications than merely
detecting the presence or absence of geometrical frustra-
tion. For example, the fact that INES geometrically frus-
trated models may behave differently from non-INES
geometrically frustrated ones hints at a significant role of
the INES property as a diagnostic tool for quantum phase
transitions in complex and frustrated models. Indeed, con-
sider a frustrated system such as the elementary cell of the
pyrochlore lattice H ¼ JðS1 � S2 þ S3 � S4Þ þ ðS1 þ S2Þ �
ðS3 þ S4Þ [24]. For J > 1 the system is INES since it is in a

dimer phase and all dimers have f ¼ Eð1Þ ¼ 0, whereas all

other bonds are in a maximally mixed state, hence f ¼
Eð1Þ ¼ 3=4. Exact diagonalization shows that the transition
from the dimer (J > 1) to the plaquette phase (0< J < 1)
corresponds to the transition from INES to non-INES, with

f12 ¼ f34 ¼ 1> Eð1Þ
12 ¼ Eð1Þ

34 ¼ 2=3. This suggests a cor-

respondence between the different quantum phases of a
frustrated model and its INES or non-INES character.
Indeed, the relation between geometric frustration and
exotic matter phases was previously pointed out in [11].
One may also ask how the presence (absence) of geometric
frustration and the INES (non-INES) nature of a system
gets reflected in computational [25], information-theoretic
[10,26] or thermodynamic terms [12]. Necessary steps
toward further investigation of all these open fundamental
questions will require achieving a rigorous mathematical
control and understanding of our quantum Toulouse
conditions as well as the generalization of our approach
to globally degenerate systems. Although some instances
of degeneracy can be easily accommodated within
our scheme (e.g., odd number of spins), some others

(e.g., thermodynamic degeneracy) are still elusive, but in
very simple cases such as the XY model.
The essential and intriguing role played by partial trans-

position cannot go unnoticed. The fact that the prototype
models preserve their INES character under partial trans-
position is to be expected if INES has anything to do with
the presence or absence of geometric frustration.
Nevertheless, the preservation of the INES property is far
from trivial because, unlike with the case of local unitary
transformations, the GSs of a Hamiltonian before and after
partial transposition are not immediately related. Indeed,
we expect that the rigorous proof of our conjectures will
shed further light on the role played by partial transposition
and its relation to geometric frustration. From a directly
physical point of view, as already noticed, our quantitative
analysis confirms previous evidence [6] that some form of
factorization of the global GS is a necessary ingredient in
the characterization of FF systems. It is tempting to specu-
late that investigating the intertwining between frustration
and factorizability of higher order (k separability, includ-
ing dimerization and trimerization) could lead to a unified
framework for the understanding of the relations between
frustration, the role of hierarchical geometric entanglement
[19] in collective quantum phenomena, and the character-
ization of entanglement and k separability by local uni-
taries [27].
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