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Otto-Hittmair-Platz 1, A-6020 Innsbruck, Austria

4Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
5Instituto de Fı́sica Fundamental, CSIC, Serrano 113-bis, 28006 Madrid, Spain

6IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36, 48011 Bilbao, Spain
(Received 9 August 2011; published 19 December 2011)

We propose the quantum simulation of fermion and antifermion field modes interacting via a bosonic

field mode, and present a possible implementation with two trapped ions. This quantum platform allows

for the scalable add up of bosonic and fermionic modes, and represents an avenue towards quantum

simulations of quantum field theories in perturbative and nonperturbative regimes.

DOI: 10.1103/PhysRevLett.107.260501 PACS numbers: 03.67.Ac, 03.70.+k, 11.10.Ef, 37.10.Ty

A quantum simulator is a quantum device that can
mimic the dynamics of another quantum system [1,2]. It
may represent a significant advance for studying the be-
havior of large quantum systems that cannot be simulated
efficiently with classical computers. Some proposals in-
clude the simulation of black holes in Bose-Einstein con-
densates [3], particle creation in expanding universes [4,5],
quantum magnets [6], and the emergence of relativistic
physics and quantum field theories in ultracold atom latti-
ces [7,8]. In trapped-ion physics, a landmark was produced
by the proposal for simulating the Dirac equation and
Zitterbewegung in a single ion [9], which was subsequently
realized in the lab [10]. Recent advances in quantum
simulations of relativistic quantum mechanics were the
realization of the Klein paradox [11,12], a proposal for
implementing the Majorana equation and unphysical op-
erations [13], and the quantum simulation of two Dirac
particles interacting with a classical potential [14].

A natural step forward is to consider the constructive
quantum simulation of quantized fields, in an effort to pave
the way towards the implementation of quantum field theo-
ries (QFTs) in trapped-ion technologies. We point out that
QFTs are significantly more involved and conceptually
different fromRefs. [9–14], given that these previous works
were related to relativistic quantum mechanics, i.e., a
single-particle theory. QFTs are among the most successful
descriptions of the physical world, and give rise to the
standard model of elementary particles. There are different
approaches to analyze these theories, of which one of the
most prominent is the Dyson series expansion in perturba-
tion theory and Feynman diagrams [15]. However, certain
theories and parameter regimes cannot be analyzed in per-
turbation theory, such as the strong coupling regime in
which the coupling parameter is so large that perturbative
methods fail. Quantum chromodynamics, for example, can-
not be studied in this way for low energies or long distances.

New techniques have been developed for overcoming these
difficulties, as lattice gauge theory computations [16]. A
quantum simulator, on the other hand, could provide re-
markable computational power to simulate QFTs faster
than classical computers. Among all plausible implementa-
tions, trapped ions may offer one of the most versatile and
powerful, due to the high degree of quantum control [17].
In this Letter, we propose a scalable quantum simulation

of interacting bosonic and fermionic quantum field modes
in trapped ions. We consider first the case of a fermion and
an antifermion field modes interacting via a bosonic field
mode. This simplified model includes already some of the
interesting features of QFTs: particle creation and annihi-
lation, self-interactions and dressed states, and the possi-
bility to study nonperturbative regimes in the ultrastrong
coupling (USC) or deep strong coupling (DSC) regimes
[18]. Moreover, we propose how to add progressively
more fermionic and bosonic field modes with a scalable
approach that may lead to the quantum simulation of a
quantum field theory as quantum electrodynamics (QED).
Actually, the use of lattice computations [16] to make
nonperturbative assertions about a continuum quantum
field theory requires a careful analysis. One has to consider
critical points, correctly choosing lattice spacings and
coupling constants. In this sense, it might well be that
theoretical developments, akin to Wilson renormalization
[19], are needed so that our proposal can be used to make
further predictions of quantum field theory phenomena.
We will study a model under the following assumptions:

(i) 1þ 1 dimensions; (ii) scalar fermions and bosons;
(iii) one fermionic, one antifermionic, and one bosonic
field modes. These considerations purport to make a real-
istic proposal with current trapped-ion experiments. Using
conditions (i) and (ii), we begin by considering a multi-
mode bosonic and fermionic coupled system, with
Hamiltonian (@ ¼ c ¼ 1)
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H ¼
Z

dp!ðbypbp þ dypdpÞ þ
Z

dk!ka
y
k ak

þ g
Z

dxc yð0; xÞc ð0; xÞAð0; xÞ; (1)

where the fermionic and bosonic fields are, in interac-

tion picture with respect to
R
dp!ðbypbp þ dypdpÞ þR

dk!ka
y
k ak,

c ðt; xÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
Z

dpðbpe�i!teipx þ dypei!te�ipxÞ; (2)

Aðt; xÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
Z

dkðake�i!kteikx þ ayk e
i!kte�ikxÞ; (3)

and ak are the bosonic annihilation operators that follow

the commutation rules ½ak; ayk0 � ¼ �ðk� k0Þ while bpðdpÞ
are fermionic (antifermionic) annihilation operators that

obey the anticommutation rules fbp; byp0 g ¼ �ðp� p0Þ and
fdp; dyp0 g ¼ �ðp� p0Þ. Including spinors and polarization

amounts to incorporating additional modes and couplings,
to be addressed with a many mode extension.

In the interaction picture of Eqs. (2) and (3), the
Hamiltonian reads

H ¼ g
Z

dxc yðt; xÞc ðt; xÞAðt; xÞ: (4)

This is a simplified version of the QED Hamiltonian [15],
allowing also the description of Yukawa interactions and
the coupling of fermions to the Higgs field.

Assumption (iii) amounts to introducing two comoving
fermionic and antifermionic modes. They will create
single-excitation incoming wave packets when applied to
the vacuum, at every time t in the Schrödinger picture,

by;Sch:in ¼
Z

dpGfðpf; pÞbype�i!t; (5)

dy;Sch:in ¼
Z

dpG �fðp �f; pÞdype�i!t: (6)

Here, Gf; �fðpf; �f; pÞ are the fermionic (f) and antifermionic

( �f) envelopes of the incoming wave packets, that we con-
sider as Gaussians centered in the average momenta, pf; �f,

with distant average initial positions. We introduce these
propagating modes instead of the standard momentum ei-
genstates, given that the latter are delocalized over all space
and are less realistic than the normalizablewave packets for
describing physical particles. Although we deal with local-
ized fermions, we consider a delocalized bosonic mode. In
this way, we will have pair creation and annihilation pro-
cesses and self-interactions by considering just one bosonic
field mode for the ease of experimental realization. We
point out that our proposed quantum simulation of finite-
number interacting quantized fieldmodes includes all terms
in a finite-mode Dyson expansion, instead of the standard

one that takes into account all modeswith a reduced number
of perturbative Feynman diagrams, see Fig. 1. Our motiva-
tion is to have a simplified model amenable to quantum
simulations with trapped ions, where the proposed theory
emerges in the natural language of current experimental
setups. The scalability of our approach may need specific
developments of lattice theories [16,20].

The fermionic modes by;Sch:in ; dy;Sch:in , are the basis for

describing self-interacting dressed states, by emission
and absorption of virtual bosons. They also represent the
incoming states that will collide in a certain region of
spacetime. These modes represent, at lowest order, the
free evolution of the incoming wave packets. Here, the
pair creation and annihilation is local; i.e., it takes place
when the two wave packets of fermion and antifermion
overlap, as corresponds to, e.g., the QED vertex. While, on
the other hand, there is an interaction at a distance between
fermion and antifermion mediated by the coupling to the
bosons.
Expanding the fermion field (2) in terms of these modes,

and dropping the remaining anticommuting modes that
complete the basis (not populated at lowest order), we
get, in the interaction picture,

c ðt; xÞ ¼ ~Gfðpf; x; tÞbineiðpfx�!ftÞ

þ ~G �fðp �f; x; tÞdyine�iðp �fx�! �ftÞ; (7)

where the modes byin ¼
R
dpGfðpf; pÞbyp and dyin ¼R

dpG �fðp �f; pÞdyp do not depend on time. Here,

~G fðpf; x; tÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
Z

dpGfðpf; pÞei½ðp�pfÞx�ð!�!fÞt�;

(8)

~G �fðp �f; x; tÞ ¼
1ffiffiffiffiffiffiffi
2�

p
Z

dpG�
�f
ðp �f; pÞe�i½ðp�p �fÞx�ð!�! �fÞt�;

(9)

are Fourier transforms, where we consider the ultrarelativ-
istic limit, for simplicity, in which !f; �f ¼ jpf; �fj. With this

simplification, all time and space dependence in Eq. (4)

will be encoded in ~Gfðpf; x; tÞ, ~G �fðp �f; x; tÞ, representing
Gaussian wave packets that propagate in spacetime, and in

FIG. 1 (color online). Feynman diagrams for a number of
terms in a finite-mode Dyson expansion associated with the
interaction Hamiltonian in Eq. (11). Note that loops do not imply
sum over all QFT modes.
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the time- and space-dependent phases that are associated to
energy and momentum conservation.

The bosonic field will, in addition, be written as

Aðt; xÞ ¼ a0e
�i!0teik0x þ ay0e

i!0te�ik0x: (10)

Consequently, the resulting interaction Hamiltonian is

H ¼ g
X

i;j¼f; �f

F i;jðpi; pj; k0; tÞ�iypi
�jpj

a0 þ H:c:; (11)

where f�ipi
gi¼f; �f ¼ bin, d

y
in, and

F f;fðpf; pf; k0; tÞ ¼
�Z

dxj~Gfðpf; x; tÞj2eik0x
�
e�i!0t;

F �f; �fðp �f; p �f; k0; tÞ ¼
�Z

dxj~G �fðp �f; x; tÞj2eik0x
�
e�i!0t;

F f; �fðpf; p �f; k0; tÞ ¼
�Z

dx~Gfðpf; x; tÞ� ~G �fðp �f; x; tÞ

� e�iðpfþp �f�k0Þx
�
eið!fþ! �f�!0Þt: (12)

This Hamiltonian contains the self-interacting dynamics
given by jf; �f; ni $ jf; �f; n� 1i (jf; �f; ni denotes the
state with one fermion, one antifermion, and n bosons),

mediated by byinbinak0 , b
y
inbina

y
k0
, dind

y
inak0 , and dind

y
ina

y
k0
. It

also includes pair creation and annihilation processes given

by jf; �f; ni $ j0; 0; n� 1i, mediated by dinbina
y
k0

and

byind
y
inak0 in the quasiresonant case, as well as dinbinak0

and byind
y
ina

y
k0
in the far off-resonant case. The last kind of

transitions, as well as self-interactions, are off resonant and
would be neglected in the weak coupling regime, but
would be allowed in our formalism for USC/DSC regimes
[18]. In our proposed setup, all perturbative series terms are
included, as shown in Fig. 1.

For practical purposes, we consider jk0j � !0, i.e., a
slow massive boson. We may then approximate

F f;fðpf; pf; k0; tÞ ¼ F �f; �fðp �f; p �f; k0; tÞ ¼ g1 expð�i!0tÞ,
and F f; �fðpf;p �f;k0; tÞ¼g2 exp½�ðt�T=2Þ2=ð2�2

t Þþ i�t�,
where g2=g1 gives the relative strength of the pair creation
with respect to the self-interaction, � ¼ !f þ! �f �!0

and T is the total time of the process, being�t the temporal
interval of the interaction region. Thus, the self-
interactions are always on, while the pair creation and
annihilation take place only when the fermion and anti-
fermion wave packets overlap, as they should.
Accordingly, the Hamiltonian we aim to simulate is

H ¼ g1e
�i!0tðbyinbina0 þ dind

y
ina0Þ

þ g2e
�ððt�T=2Þ2Þ=ð2�2

t Þ½ei�tbyindyina0
þ e�ið2!0þ�Þtdinbina0� þ H:c: (13)

We propose to implement this Hamiltonian dynamics in a
system of two trapped ions, see Fig. 2(a). The bosonic
mode will be encoded in the center-of-mass (c.m.) vibronic
mode of the two-ion system. We envision to map the

four-dimensional Hilbert space associated to the fermionic
and antifermionic operators onto four internal levels of the
first ion. For this, we consider a Jordan-Wigner mapping,

byin ¼ I � �þ, bin¼ I���, dyin¼�þ��z, din¼����z,

and encode it in four internal levels of the first ion, j1i, j2i,
j3i, j4i, e.g., byin ¼ j4ih3j þ j2ih1j, dyin¼j4ih2j�j3ih1j, the
vacuum state is state j1i, and jfi ¼ j2i, j �fi ¼ �j3i,
jf; �fi ¼ �j4i. Accordingly, Hamiltonian (13) results in

H ¼ �gðtÞðj4ih1ja0ei�t þ j1ih4jay0e�i�tÞ
� gðtÞðj1ih4ja0e�ið2!0þ�Þt þ j4ih1jay0eið2!0þ�ÞtÞ
� g1ðj3ih3j � j2ih2jÞða0e�i!0t þ ay0e

i!0tÞ
þ g1Iða0e�i!0t þ ay0e

i!0tÞ: (14)

Here, the first line corresponds to a detuned red sideband
interaction between j4i and j1i with time-dependent Rabi
frequency gðtÞ ¼ g2 exp½�ðt� T=2Þ2=2�2

t �. The second
line is a detuned blue sideband interaction, between the
same levels and with the same Rabi frequency. The third
line can be developed applying detuned red and blue

sideband interactions to j3i and j2i to produce ðj3ih2j �
j2ih3jÞ½a0 expð�i!0tÞ þ ay0 expði!0tÞ�=i, and a rotation of
j3i and j2i with a classical field to produce the change
ðj3ih2j � j2ih3jÞ=i ! ðj3ih3j � j2ih2jÞ. These operations
are equivalent to a rotation from �y to �z in the subspace

of j3i and j2i and, therefore, not affecting the other
Hamiltonian terms. To implement the last line we could
just periodically drive the trap, but this method is only
applicable to the c.m. mode. The alternative scalable

FIG. 2 (color online). (a) Setup for the trapped-ion simulation.
(b) jhf; 0; 0jc ðtÞ1ij2 as a function of t in units of!0 (red or upper
curves), where jc ðtÞ1i is the evolved state from jc ð0Þ1i ¼
jf; 0; 0i, and average number of virtual bosons (blue or lower
curves), hay0a0i, for g1 ¼ 0:15!0, 0:1!0, 0:05!0, 0:01!0,

g2 ¼ 0. The largest amplitudes correspond to the largest cou-
plings. (c) jhf; �f; 0jc ðtÞ2ij2 as a function of t in units of !0 (red
or upper left curve), where jc ðtÞ2i is the evolved state from
jc ð0Þ2i ¼ jf; �f; 0i, and average number of virtual bosons (blue
or lower left curve), hay0a0i, for g1 ¼ 0:01!0, g2 ¼ 0:21!0,

�t ¼ 3=!0, T ¼ 30=!0, � ¼ 0. (d) The same as (c) for g1 ¼
0:1!0, g2 ¼ !0, �t ¼ 4=!0, T ¼ 30=!0, � ¼ 0.
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approach that we propose, applicable to any mode, consists
of applying to the second ion detuned red and blue side-

bands to generate the term g1�x½a0 expð�i!0tÞ þ
ay0 expði!0tÞ� where the matrix �x corresponds to the

second ion internal levels. Preparing this ion into an eigen-
state of �x, i.e., �xjc i ¼ �jc i, we produce the desired

interaction a0 expð�i!0tÞ þ ay0 expði!0tÞ [12]. Note that

in the limit of large jtj in Eq. (14), we could also study the
spectrum properties in a straightforward manner.

We have numerically analyzed some of the features that
could be simulated in the experiment.

(i) Fermion self-interaction.—In Fig. 2(b), we show the
self-energy processes of a single fermion, which emits and
reabsorbs bosons as it evolves. The average number of
emitted bosons grows with the coupling. The effective
Hamiltonian that results from projecting Eq. (13) onto a
single initial fermion, coincides with the DSC Hamiltonian
of Ref. [18], Eq. (4), for qubit frequency equal to zero.
Accordingly, what is observed is emission and reabsorp-
tion of the bosons at a period which goes as 2�=!0, where
!0 is in our case the simulated boson frequency.

(ii) Pair creation and annihilation.—In Fig. 2(c) we
show how a fermion-antifermion pair is annihilated, giving
rise to a boson.

(iii) Nonperturbative regime.—For large g2 values, g2 �
!0, we enter into the nonperturbative regime, in which
Feynman-diagram techniques are of little help. Here, we
obtain that the number of created bosons is much larger
due to the nonresonant terms [see Fig. 2(d)]. The dynamics
becomes more complex and strongly dependent on the
specific coupling values.

Having presented the basic three-mode model, we dis-
cuss plausible steps in an effort to approach a full-fledged
quantum field theory. We envision a feasible scalable
method that allows a given trapped-ion setup to add up
more fermionic and bosonic field modes. The resulting
Hamiltonian, equivalent to Eq. (11) with extension to
many modes, will be

H ¼ g
X
l

X
i;j

F i;jðpi; pj; kl; tÞ�iypi
�jpj

akl þ H:c:; (15)

with i; j ¼ 1; . . . ; nf, nf the number of fermionic and

antifermionic modes, and l ¼ 1; . . . ; nb, with nb the num-
ber of bosonic modes. Now the functions F i;jðpi; pj; kl; tÞ
will contain the overlaps between the overcomplete set of
Gaussians associated to the different incoming modes,
Giðpi; pÞ, i ¼ 1; . . . ; nf, similarly to Eqs. (12). We can

consider additional field modes by involving more ions,
including internal and external degrees of freedom, aiming
at an intermediate scalability [21]. Here, it would be ad-
vantageous to make use of the transverse modes of a large
ion string [22]. These modes can be closely spaced in
frequency, such that it is not necessary to generate laser
frequencies for each of them, relaxing infrastructural re-
quirements while approximating the continuum to a certain

extent. For the extension to many field modes, it is possible
to consider the use of a digital simulator approach using
many ions. The nonlocal spin operators could in principle
be realized via recently developed stroboscopic techniques
[23–27]. We point out that already with 10 two-level ions
and 5 phonons per ion, one could perform quantum simu-
lations of interacting quantum field modes that are beyond
the reach of classical computers, that is, a Hilbert space
dimension of 1010 	 233.
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