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We study the linear instability with respect to necking of a filament of polymeric fluid undergoing

uniaxial extension. Contrary to the widely discussed Considère criterion, we find the onset of instability to

relate closely to the onset of downward curvature in the time (and so strain) evolution of the zz component

of the molecular strain, for extension along the z axis. In establishing this result numerically across five of

the most widely used models of polymer rheology, and by analytical calculation, we argue it to apply

generically. Particularly emphasized is the importance of polymer chain stretching in partially mitigating

necking. We comment finally on the relationship between necking and the shape of the underlying steady

state constitutive curve for homogeneous extension.
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Understanding the rheology (flow properties) of poly-
meric fluids is central to their processing and performance.
Many commercially important flows are dominated by
extensional components: fiber spinning, film blowing, ex-
trusion, and ink jet printing provide good examples. In fluid
dynamical terms, extensional flows cause material ele-
ments to separate exponentially quickly and so subject
the underlying macromolecules to extreme stretching and
reorientation. They are thus highly sensitive to underlying
molecular details: linear vs branched polymer chains, for
example. Indeed many nonlinear flow features arise only in
extension, which thus provides a crucial benchmark for
theories of polymer rheology.

In many polymeric fluids, a state of uniform flow be-
comes unstable when the flow rate exceeds the rate 1=� on
which the underlying molecular structure relaxes [1]. In
flows dominated by shear, for example, the phenomenon of
shear banding [2] arises widely for shear rates _�� >O (1).
In a linear stability analysis, the criterion for onset of a
shear banding instability is (usually) that the shear stress is
a decreasing function of shear rate.

In extensional rheology [3,4] a common protocol is that
of filament stretching [5], in which a cylindrical sample of
fluid is drawn out in length. Though the aim is to achieve
uniform extensional flow for benchmarking against theory,
complications often arise. Particularly serious is the wide-
spread observation of necking instabilities (Fig. 1), in both
experiment [6–13] and simulation [14–18]. These lead to
heterogeneous deformation and even failure at only modest
strains: any small indentations in cross-sectional area be-
come ever more pronounced until the sample breaks. This
hinders attempts to characterize these fluids scientifically,
and process them commercially.

Although a long-standing problem [19–33], necking
remains poorly understood. Crucially lacking is any
reliable criterion for its onset, of the same stature as
that given above for shear banding. Popularly discussed
is the Considère criterion [34], which predicts necking if

the tensile force decreases with extensional strain:
dF=d� < 0. But taking F to depend only on � in this
way assumes the flow purely elastic: it cannot account
for the dependence of necking on the strain rate _� in these
viscoelastic fluids [35], nor predict the rate at which neck-
ing sets in.
Here we show that the Considère criterion in fact does

not apply in most regimes of polymeric flow. By a linear
stability analysis, we demonstrate the onset of necking
instead to relate closely to that of downward curvature in
the time (or equivalently strain) evolution of the zz com-
ponent of the molecular conformation tensor, for stretching
at constant rate _� along the z axis. In most regimes, this
further corresponds to downward curvature in the evolution
of the tensile stress. In establishing this result numerically
across five of the most widely used models of polymer
rheology, and by analytical calculation, we argue it to
apply generically. The other central contribution of this
Letter is to demonstrate the crucial role played by poly-
meric chain stretching in partly mitigating necking.
We consider a polymeric fluid in inertialess flow,

obeying the force balance condition 0 ¼ r � T ¼
r � ð�þ 2�D� PIÞ. The total stress T has a viscoelastic
contribution � from the polymer, a Newtonian contribu-
tion of viscosity � from the solvent, and an isotropic
pressure field P set by mass balance r � v ¼ 0 for
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FIG. 1. Cartoon of necking.
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incompressible flow. Here v is the velocity field and D the
symmetric part of the velocity gradient tensor ����@�v�.

We assume the polymeric stress �¼G0½kðWÞW�I� with
G0 a modulus andW a dimensionless tensor characterizing
the conformation of the chainlike polymer molecules. (In
the simplest cartoon these are taken as dumbbells with span
~R and W / h ~R ~Ri.) This has generalized dynamics

ð@t þ v � rÞW ¼ W � �þ �T �W � 1

�
RðWÞ; (1)

representing a competition between driving out of equilib-
rium by flow (terms in �) and relaxation back to equilib-
rium W ¼ I on a time scale �.

We perform calculations for five concrete functional
choices for kðWÞ and RðWÞ, each corresponding to a
particular model used widely in the literature [36].
The Oldroyd B model has k ¼ 1, R ¼ W � I. The
Giesekus model differs from this in having R ¼
ðW � IÞ þ �ðW � IÞ2 with 0 � � � 1; the Fene-P (in
which we assume small �) in having R ¼ kðWÞW � I
with k ¼ 1=ð1� �TÞ and trace T ¼ Wxx þWyy þWzz;

the Rolie-Poly [37] R ¼ W � Iþ 2ð1� ffiffiffiffiffiffiffiffiffi
3=T

p Þ�
½W þ �ðT=3Þ�RPðW � IÞ��=½�Rð1� fT=3Þ�. Finite �R in
the Rolie-Poly model allows stretching of the underlying
polymer chains by the flow field. Indeed for _��R > 1
infinite stretch can develop if f ¼ 0; f > 0 restores finite
stretch; �R ! 0 disallows it entirely.

We use units in which � ¼ 1, G0 ¼ 1. This leaves as
parameters the Newtonian viscosity �, which we take to
zero, and � (Giesekus), � (Fene-P), �, �R, �RP, f
(Rolie-Poly) in which we use � ¼ 0:0, �RP ¼ �1=2 fol-
lowing [37].

We consider a long slender [38] tube of fluid subject to
uniaxial extension along the z axis. At any time t it has
cross sectional area profile Aðz; tÞ and area-averaged fluid
velocity Vðz; tÞ in the z direction, with extension rate
_�ðz; tÞ ¼ @zVðz; tÞ. The mass balance condition is
then @tAðz; tÞ ¼ �@zðAVÞ, and force balance FðtÞ ¼
A½kðTÞðZ� XÞ þ 3� _�� � A�E (neglecting surface ten-
sion). This defines the tensile stress �Eðz; tÞ given force
FðtÞ, which is uniform along the filament. Z ¼ Wzz and
X ¼ 1

2Wxx þ 1
2Wyy (so Zþ 2X ¼ T) obey

@tZðz; tÞ þ V@zZ ¼ 2 _�Z� RðZ; TÞ=�;
@tXðz; tÞ þ V@zX ¼ � _�X� RðX; TÞ=�; (2)

with RðZ; TÞ ¼ Z� 1 (Oldroyd B); RðZ; TÞ ¼
Z� 1þ �ðZ� 1Þ2 (Giesekus); RðZ;TÞ¼kðTÞZ�1

(Fene-P); RðZ; TÞ ¼ Z� 1þ 2ð1�
ffiffiffi
3
T

q
Þ½Zþ �ðT3Þ�RPðZ�

1Þ�=�Rð1� fT
3 Þ (Rolie-Poly).

Given a time-dependent separation of the sample ends
that imposes a global strain ��ðtÞ averaged along the fila-
ment, we transform to the affinely coextending, cothinning

frame by defining u ¼ ze� ��ðtÞ, vðu; tÞ ¼ Vðz; tÞe� ��ðtÞ and

aðu; tÞ ¼ Aðz; tÞe ��ðtÞ. We then have mass balance, force
balance, and viscoelastic dynamics:

@ta ¼ �@u½ðv� �_�uÞa�; (3)

0 ¼ @u½aðkðTÞðZ� XÞ þ 3� _�Þ� ¼ @u½a�E�; (4)

@tZ ¼ �ðv� �_�uÞ@uZþ 2 _�Z� RðZ; TÞ=�;
@tX ¼ �ðv� �_�uÞ@uX � _�X � RðX; TÞ=�: (5)

For a constant global extension rate �_� commenced at
time t ¼ 0, a homogeneous ‘‘base state’’ in which uniaxial
extension is (artificially) maintained uniformly along the
filament, regardless of whether it is in practice unstable to
heterogeneous necking, is prescribed by _�ðu; tÞ ¼ �_�,
vðu; tÞ ¼ u�_�, aðu; tÞ ¼ a0 ¼ 1, and the homogeneous so-
lutions ZðtÞ, XðtÞ of Eqs. (5) given Zð0Þ ¼ Xð0Þ ¼ 1.
In any regime of finite extensional viscosity this base

state attains as t ! 1 a steady state in the cothinning,
coextending frame. (In the laboratory frame the sample
exponentially extends and thins.) This is described by a
homogeneous constitutive curve �Eð _�Þ of tensile stress vs
strain rate, Fig. 2(a). (For this uniform base state we use
symbols �_� and _� interchangeably.) The Oldroyd B model
has divergent viscosity for _� ! 1=2. This divergence is
avoided (narrowly, for small �, �) in Giesekus and Fene-P
(which reduce to Oldroyd B for � ¼ 0, � ¼ 0). The stretch
Rolie-Poly model with f ¼ 0 likewise has divergent vis-
cosity for _��R ! 1, avoided narrowly for small f > 0 and
entirely in the nonstretch model �R ¼ 0.
The time dependence of the tensile stress �E in this

homogeneous base state as it evolves towards the steady
state just described is shown in Fig. 2(b) for the stretch
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FIG. 2. (a) Homogeneous constitutive curves for steady state
uniaxial extension. Clockwise: Oldroyd B; Giesekus (� ¼
0:001); fene-P (� ¼ 0:001); stretch Rolie-Poly (�R ¼ 0:0316)
with zero extensibility; the same with finite extensibility
(f ¼ 10�4); nonstretch Rolie-Poly. (Curves for Giesekus and
fene-P indistinguishable.) (b) Tensile stress �E vs time in startup
of uniaxial extension in the stretch Rolie-Poly model with �R ¼
0:0316, f ¼ 10�4 for _� ¼ 10n, n ¼ �1, �1=2, 0, 1=2, 1, 3=2, 2
(curves upwards). Inset: corresponding tensile force.

PRL 107, 258301 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

16 DECEMBER 2011

258301-2



Rolie-Poly model with finite extensibility. The correspond-
ing force FðtÞ ¼ �EðtÞAðtÞ (inset) displays a maximum due
to the rise in �E after the inception of flow being later
overcome by exponentially declining area.

A maximum in force vs time t directly also signifies a
maximum vs strain � ¼ _�t, given constant _�. For a non-
linear elastic solid, the Considère criterion decrees such a
maximum to herald departure from uniform extension and
onset of necking. We now examine whether this criterion
also applies to polymeric fluids, as often suggested.

To do so, we analyze the linear stability of the time-
dependent homogeneous uniaxially extending base state
just described by linearizing in small heterogeneous fluc-
tuations

P
q½�aqðtÞ; � _�qðtÞ; �ZqðtÞ; �XqðtÞ� expðiquÞ about

it. To first order in the amplitude of these we have

@t

�a

0

�Z

�X

0
BBBBB@

1
CCCCCA

q

¼

0 �1 0 0

�E 3� @Z�E @X�E

0 2Z 2�_�� r
� � s

� � 2s
�

0 �X � s
� ��_�� r

� � 2s
�

0
BBBBB@

1
CCCCCA

�a

� _�

�Z

�X

0
BBBBB@

1
CCCCCA

q

;

in which r ¼ @ZRðZ; TÞ, s ¼ @TRðZ; TÞ. The q indepen-
dence of this matrix suggests all spatial modes will grow
(or decay) equally, though we return below to discuss what
shape can be expected in practice.

If the time dependence of the base state were disre-
garded, instability to necking would correspond to any
eigenvalue of this matrix having positive real part.
However, its entries Z, X, �E, T refer to the time-evolving
base state, rendering the eigenvalues time dependent: in-
deed, these can start out all negative before one later goes
positive. Numerics and analytics (not shown) reveal this
sign change to correspond to excellent approximation to
onset of downward curvature €Z < 0 in the time (and so
strain) evolution of the base state ZðtÞ and also (apart from
the small discrepancy seen in Fig. 3) of the tensile stress,
€�E < 0. This strongly suggests that necking will arise in
any regime of €Z < 0, €�E < 0. Some caution is needed,
however, because the eigenvectors also evolve. To examine
rigorously the onset of necking, therefore, we explicitly
integrate the linearized equations numerically. (Nonlinear
effects must eventually become important, but when de-
pends on the size of the seeding perturbation, which is not
specified.) Resulting contour maps of �aðtÞ=�að0Þ are
shown in Figs. 3 and 4, with the criteria €Z ¼ 0, €�E ¼ 0,
_F ¼ 0 for comparison.
In the Oldroyd B model, Fig. 3(a), �aðtÞ grows without

bound for �_� < 1=2, albeit slowly, predicting that necking
should eventually arise in any experiment of long enough
duration, even causing filament failure unless mitigated by

nonlinear effects. For �_� > 1=2, in contrast, �aðtÞ grows
only weakly before quickly saturating, signifying stability
against necking. This is consistent with the divergence in
the underlying constitutive curve: for �_� > 1=2 the base
state ZðtÞ and �EðtÞ diverge in time with ever upward
curvature and the eigenvalue remains negative. (For �_� <
1=2, ZðtÞ and �EðtÞ curve down towards steady state.).
The Giesekus and fene-P models avoid this viscosity

divergence: in the evolution of the base state an early time
regime of Oldroyd B-like upward curvature €�E>0, €Z>0,
inside the nose-shaped region in Figs. 3(b) and 3(c), later
gives way to downward curvature toward a high viscosity
steady state. Surprisingly �a does grow inside the nose,
even though €Z > 0 and all eigenvalues are negative here.
This growth is however weak enough to go unnoticed,
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FIG. 3. Contour map for growth of fluctuations in area:
�aðtÞ=�að0Þ ¼ 2n for n ¼ 1; 2; 3 � � � shown by thin solid lines
from left to right. Dotted lines, open circles, thick solid lines
show location, respectively, of _f ¼ 0, €�E ¼ 0, €Z ¼ 0.
(a) Oldroyd B, (b) Giesekus (� ¼ 0:001), (c) Fene-P (� ¼
0:001).
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FIG. 4 (color online). Contour maps �aðtÞ=�að0Þ ¼ 2n for
n ¼ 1; 2; 3 . . . , thin solid lines left to right. Dotted lines, open
circles, thick solid lines show location of _f ¼ 0, €�E ¼ 0, €Z ¼ 0.
(a) Nonstretch Rolie-Poly, (b) Stretch Rolie-Poly (�R ¼ 0:0316,
f ¼ 0:0), (c) Stretch Rolie-Poly with finite extensibility, f ¼
10�4. Red line in (a) shows analytical prediction for divergence
in �a.
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assuming the perturbation that initially seeds the instability
to be small. Rapid exponential growth and observable
necking set in only after the nose, where €Z < 0, €�E < 0
and an eigenvalue is positive.

Can these contour maps be understood analytically?
Given an evolution equation @t�E ¼ _�Gð�E; TÞ �
Hð�E; TÞ=� for the base state’s tensile stress, one can
show (approximately) for Oldroyd B and Giesekus that

�aðtÞ=�að0Þ ¼ fðxÞ with f ¼ ð1þ bxÞ�_�=b and x ¼
�E= _�E. Here b ¼ H=��E � �_� varies only mildly com-
pared to x in Giesekus, and is constant for Oldroyd B. In
any regime of finite viscosity (Oldroyd B for �_� < 1=2 and
Giesekus for all �_�) the argument x ! 1 as t ! 1 due to
the downward curvature to steady state _�E ! 0. Combined
with fðxÞ ! 1 as x ! 1, this gives �a ! 1 as t ! 1:
necking fluctuations grow without bound, as seen numeri-
cally. In contrast the divergent viscosity of Oldroyd B for
�_� > 1=2 gives x ! const. as t ! 1 and �a saturates.
We now use these findings in the above phenomenologi-

cal (but widely used) models as pedagogical backdrop to
the more realistic Rolie-Poly model, focusing particularly
on the dramatic role of polymeric chain stretch.

Without chain stretch, �R ¼ 0, the result �aðtÞ ¼
�að0ÞfðxÞ with f ¼ ð1þ bxÞ�_�=b, x ¼ �E= _�E and b ¼
1=�� �_� holds exactly. Finite extensional viscosity further
gives x ! 1 as t ! 1 for all �_�, and so unbounded growth
of �a. In fact for �_� > 1=�, f diverges at finite x giving a
dramatic finite-time divergence in �a. An analytical pre-
diction for this is shown in Fig. 4(a); the numerical con-
tours indeed accumulate at it. Clearly, suppression of chain
stretch confers spectacular necking instability.

For finite �R the base state shows divergent extensional
viscosity for �_� ! 1=�R, associated with the development
of infinite chain stretch. This is reminiscent of Oldroyd B
for �_� ! 1=2. Correspondingly, necking is suppressed alto-
gether for �_� > 1=�R [Fig. 4(b)]. Even for �_� < 1=�R the
finite-time divergence of Fig. 4(a) disappears. Chain
stretch thus strongly mitigates necking.

Although instructive, infinite chain stretching is clearly
unphysical so we now introduce a parameter f to cure it
[37], analogous to � in fene-P. With this, the regime of
upward curvature in the base state, €Z > 0, €�E > 0, is again
confined to a nose-shaped region [Fig. 4(c)]. As in
Giesekus and fene-P, �a grows only slowly inside this,
exponential growth sets in only beyond it, once €Z < 0,
€�E < 0. The nose’s tip at �_��R ¼ Oð1Þ gives a maximum
in onset strain vs �_� that closely resembles experimental
data [8,13], as collated onto a master plot in Ref. [4].

Taken together, Figs. 3 and 4 tell us how heterogeneity
grows in a necking instability intrinsic to the material’s
rheology. To specify the process fully also requires knowl-
edge of what initial perturbation seeds the instability. If this
is small (thermal noise or minor mechanical imperfection),
many contour lines will need to be crossed before necking
becomes apparent, well into the regime of exponential

growth in �aðtÞ, and so of €Z < 0, €�E < 0, which we thus
propose as the criterion for onset in this case. This is likely
in rheometers that co-thin their end plates as the sample
extends. In others, much larger heterogeneous seeding will
arise trivially because the sample is constrained to remain
thicker at the plates. Only the first few contours might then
need to be crossed and, as seen in the maps, the Considère

criterion _f < 0 should perform tolerably. In either case we
expect such end-plate effects, however small, to select out
of the q—independent spectrum of (6) those modes favor-
ing a single neck, midsample.
Finally, we ask if any fluid of finite extensional viscosity

should neck, via a simplified approach in which (i) the base
state has already attained a steady state on its constitutive
curve, and (ii) Z ¼ Zð _�Þ, X ¼ Xð _�Þ are instantaneously
prescribed by _�. (6) then reduces to @t�a ¼ �� _�, 0 ¼
�Eð�_�Þ�aþ �0

Eð�_�Þ� _�, and so @t�a ¼ ð�E=�
0
EÞ�a. This in-

deed suggests any regime of �0
Eð�_�Þ> 0 is unstable to

necking (including any Newtonian fluid, even without
surface tension). The physics is clear. Mass balance
@t�a ¼ �� _� makes a more strongly stretched section of
filament get thinner. This must then develop larger stress
�E to maintain uniform force along the thread. For positive
�0

E this needs even stronger stretching, giving positive
feedback. This also suggests any negatively sloping part
of a constitutive curve to be stable against necking.
Whether any such a curve exists, and whether this distilled
result still holds given realistic Z, X dynamics, is unclear.
In summary, we have given a new criterion for instability

to necking of a filament of polymeric fluid in uniaxial
extension of constant rate. Future work will consider the
nonlinear dynamics of necking, beyond the linear regime,
effects of surface tension, applied force protocols and
nonuniform extension rates, and the interplay of ‘‘intrin-
sic’’ necking instability with ‘‘external’’ (end plate) effects.
The author thanks Gareth McKinley, Mike Cates, Ron

Larson, and Helen Wilson for interesting discussions.
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