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The crawling of cells on a substrate is in many cases driven by the actin cytoskeleton. How actin

filaments and associated proteins are organized to generate directed motion is still poorly understood.

Recent experimental observations suggest that spontaneous cytoskeletal waves might orchestrate the

actin-filament network to produce directed motion. We investigate this possibility by studying a mean-

field description of treadmilling filaments interacting with nucleating proteins, a system that is known to

self-organize into waves. Confining the system by a boundary that shares essential features of membranes,

we find that spontaneous waves can generate directional motion. We also find that it can produce lateral

waves along the confining membrane as are observed in spreading cells.
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The migration of cells on substrates plays an important
role during development, immune responses, and wound
healing [1]. During the past two decades a large number of
molecules essential for cell crawling have been identified
and some of them have been characterized biochemically
in impressive detail [2]. This inventory of proteins notably
implies actin, which can assemble into filamentous poly-
mers. The two ends of an actin filament display different
assembly kinetics, which can lead to ‘‘treadmilling,’’
where the filament grows at one and shrinks at the other
end. However, in spite of our molecular understanding, the
way in which interactions between actin and other cytos-
keletal proteins lead to their organization on a cellular
scale and generate directed motion remains largely
unknown.

Several physical approaches operating on different
scales have been developed in the past to elucidate differ-
ent aspects of cell crawling. A large body of work has
followed rather microscopic approaches to study the gen-
eration of forces by polymerization of actin filaments [3].
Large scale phenomenological approaches have been used
to set up whole cell models [4,5] or to describe general
aspects of the force generating cell structures [6–10]. Most
of these approaches did not offer an explanation of how a
cell acquires directionality, because it was built in by
assuming predefined leading and trailing edges, which
might be appropriate in the presence of external cues.

Remarkably, however, directed motion does not neces-
sarily require an external guiding stimulus. Instead, cells
can polarize spontaneously [11]. Usually this is attributed to
feedback loops in signaling pathways, which have been
analyzed from a computational point of view in a number
of works [12–15]. A mechanism for spontaneous cell po-
larization resulting from a mechanical instability of the

cytoskeleton has been presented by Callan-Jones et al. us-
ing a coarse-grained phenomenological description [16].
An alternative possibility has been suggested by observa-
tions on naive human neutrophil granulocytes, which are a
kind of white blood cells. There, spontaneous actin poly-
merization waves have been observed and were argued to
orchestrate cytoskeletal proteins to generate directional cell
motility [17]. Spontaneous actin waves are now recognized
to be a common cellular phenomenon [18] and a number
of possible underlying mechanisms have been studied
[17,19–22]. While these works study mechanisms of wave
formation that are due to processes intrinsic to the cytoske-
leton, cytoskeletal waves can also result from mechanic
interactions with a membrane [23,24].
In this work, we consider a possible mechanism of

spontaneous generation of actin bulk waves and investigate
its implications on the dynamics of the membrane. We
study the generation of directional cell motility through
spontaneous actin waves using a mesoscopic description of
treadmilling actin filaments. Motivated by the experiments
in Ref. [17], we assume that filaments are nucleated by
molecules that are active when bound to the substrate; see
Fig. 1. Reciprocally, actin filaments induce their detach-
ment. This system is known to generate waves provided
that substrate binding of the nucleators is cooperative [20].
We consider filaments to be polar rigid rods. The distri-

bution cðr; û; ‘Þ gives the density of plus ends at position
r 2 R2 of filaments with orientation û and length ‘. The
dynamic equation for c reads

@tc ¼ �rr � vaûc� @‘ðva � vdÞc� �dcþ �rr � fbc:
(1)

The first two terms on the right-hand side describe filament
growth at plus ends with velocity va and shrinkage at
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minus ends with velocity vd, where rr is the two-
dimensional gradient operator. Filaments degrade at rate
�d. Generation of new filaments is captured by the bound-
ary condition cðr; û; ‘ ¼ 0Þ ¼ �nbðrÞ. Here, nb is the
distribution of active nucleating proteins and � the nuclea-
tion rate.

Before discussing the term proportional to the force
density fb, let us note that our description neglects steric
interactions and (transient) cross-links between filaments.
Cross-links induce a finite elastic modulus on short time
scales. For actin networks, the corresponding relaxation
time is of the order of 1 to 10 s and effects on shorter time
scales are not captured by our description. Steric interac-
tions lead to confinement of filaments. We account for this
effect by neglecting rotational diffusion. We also neglect
translational diffusion, which would account for thermal
noise and fluctuations in the polymerization and depoly-
merization processes. Its presence affects the dynamics
quantitatively, but as long as it is below a critical value,
the qualitative outcome is not changed.

The force density fb confines the system to an evolving
domain � � �ðtÞ with boundary � ¼ @�. We determine
fb from a soft repulsive potential V capturing the interac-
tion between filaments and the boundary. Explicitly, a
filament with a plus end at r experiences a force
�rrVðr;�Þ. The value of the potential at a point depends
only on the (signed) distance d of the filament’s plus end to
the boundary �, dðrÞ ¼ �ðrÞminr02�kr� r0k. Here, �ðrÞ is
�1 or þ1, respectively, for r inside or outside of �. The
exact form of the potential VðdÞ is unimportant as long as it
is nearly constant within most parts of the domain’s interior
and then rises towards the boundary. For our numerical
calculations it turned out to be convenient to choose
VðdÞ ¼ � tanhð�dÞ=2 with positive constants � and �
that determine the amplitude and steepness of the potential.
In the limit �;� ! 1 the membrane is a perfectly reflect-
ing boundary.

The force density fb is balanced by a force density fenv
resulting from interactions of the filaments with their intra-
cellular environment. These include, notably, interactions
with other cellular components and transient attachments
to the substrate. They can be captured by an effective

Stokesian friction force [25], fenv ¼ ��1v, where v is the
filament velocity and � the corresponding effective fila-
ment mobility that is much smaller than that in water. For
simplicity, we assume � to be isotropic and independent of
the filament length and thus arrive at the last term on the
right-hand side of Eq. (1). Again for simplicity, we have
neglected a possible torque exerted by the membrane on
the filaments. Finally, we also neglect a dependence of the
growth velocity va on the applied force. Taking this de-
pendence into account does not significantly modify the
solutions.
We now describe the dynamics of the nucleators. They

come in two flavors: active nucleators generating new
filaments are bound to the substrate, while inactive nucle-
ators diffuse freely in �. The equations governing the
dynamics of the corresponding densities nb and nf, respec-

tively, are

@tnf ¼ Df�nf �!að1þ!1n
2
bÞnf þ!dTnb; (2)

@tnb ¼ Db�nb þ!að1þ!1n
2
bÞnf �!dTnb: (3)

The parameters !a and !1 describe attachment to the
substrate, i.e., activation of the nucleators. The rate !d

of nucleator detachment, i.e., inactivation, is proportional
to the amount T of filaments at r, TðrÞ ¼R1
0 d‘

R
‘
0 d�

R
dûcðrþ �û; û; ‘Þ. In an unbounded do-

main, Eqs. (1)–(3) generate a rich phase diagram present-
ing various traveling wave patterns as well as stationary
states [20].
The structure of the dynamic Eqs. (1)–(3) allows us to

integrate out the length dependence of the filament distri-
bution. Introducing the density of plus and minus ends, cþ
and c�, of all filaments with orientation û at r, and the total
density � of all filaments of orientation û overlapping with
r, �ðr; ûÞ ¼ R1

0 d‘
R
‘
0 d�cðrþ �û; û; ‘Þ, we obtain

@tc
þ¼�vaû �rcþþ�ðva�vdÞnb��dc

þþ�rr �fbcþ;
(4)

@tc
�¼�vdû �rc�þ�ðva�vdÞnb��dc

�þ�rr �fbc�;
(5)

@t�¼�vaû �r�þðva�vdÞc���d�þ�rr �fb�: (6)

This simplifies the numerical solution of the dynamic
equations. We provide details of the integration scheme
in the Supplemental Material [26].
We now go on to present the dynamic equations govern-

ing the evolution of the boundary �. On each infinitesimal
line element of �, the force is a combination of the forces
exerted by the filaments as well as the force resulting from
the deformation of the boundary plus dissipative forces.
The deformation forces are obtained from a free energy F
through

F

F

(5) (6)(1) (2)
(3)

(4)

FIG. 1. Cytoskeletal processes considered in this work.
Nucleating complexes bind cooperatively to the substrate (1),
thus get activated, and nucleate new filaments that are linked to
the substrate (2). Filaments inactivate nucleating complexes by
inducing their detachment from the substrate (3). Filaments can
spontaneously disassemble (4), they shrink at one end (5) and
grow at the other, which generates force dipoles (6) and possible
protrusion of the membrane boundary.
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f ¼ ��F
��

; (7)

where �=�� denotes the functional derivative with respect
to variations of the boundary �. The expression for F is
given by the Helfrich free energy F ¼ R

� dr	H
2=2þ


�þ P�, where 	 is the bending modulus, H the mean
curvature, 
 surface tension, and P the difference between
internal and external pressure. By adding the interaction
term

R
� drVðr;�ÞcþtotðrÞ toF , with cþtotðrÞ ¼

R
dûcþðr; ûÞ

being the total local density of the plus ends at r, expres-
sion (7) also captures the forces exerted by the filaments on
the membrane. Indeed, these must be of the same magni-
tude but of opposite orientation as the force density exerted
by the membrane on the filaments to satisfy Newton’s third

law. The dynamic equation for the boundary is then _�¼�f,
where � > 0 is an effective mobility. Equations (1)–(7)
completely specify the dynamics of our system. The dy-
namic equations respect momentum balance: the total
force exerted by the filaments on the substrate and on the
membrane vanishes [26].

Our numerical analysis of the dynamic equations (1)–(7)
shows that the system can spontaneously break symmetry
and evolve into a state of persistent motion; see Fig. 2. For
the same parameter values, the system of nucleators and
filaments generates traveling wave solutions also in an
unbounded domain. The propagation velocity of these
free waves is larger than the migration velocity of the
domain. In general, the migration velocity is bounded
from above by the assembly velocity va and depends on
the kinetics of the nucleators. It increases with the binding
rate of the nucleators!a, but does not depend significantly
on the detachment rate !d. Finally, the average filament
length is ðva � vdÞ=�d ¼ 1=ð24�Þ, which is much smaller
than the domain size. Movies of this state and the

ones discussed below are given in the Supplemental
Material [26].
We determined the phase diagram as a function of the

number of nucleators and the polymerization velocity; see
Fig. 3. Moving states exist above a critical number of
nucleators in the domain. Furthermore, the treadmilling
velocity va needs to be between two critical values.
For smaller values, spiral waves emerge and the system

does not move on average; see Fig. 4(a). These spirals
rotate with a velocity that is comparable to the propagation
velocity of waves in an unbounded domain. The spirals can
have multiple arms; see Fig. 4(b). Transitions between
spiral states with different numbers of arms can be under-
stood from properties of waves in unbounded domains: the
corresponding wavelength � decreases with an increasing
amount of nucleators. Roughly, in the bounded domain, the
transition from a one- to a two-armed spiral occurs when
2� � 2
r, where r is the average radius of the domain.
Spiral waves will generate deformations of the domain

that propagate laterally along its boundary; see Fig. 5.
These deformation waves are reminiscent of observations
on spreading fibroblasts [27,28] and in cells of the fruit fly
Drosophila melanogaster with an enhanced rate of actin
assembly [29]. The magnitude of the domain boundary’s
deformation induced by a spiral wave depends on the
membrane stiffness. If the stiffness exceeds a critical value,
then the dynamic state of the system will change dramati-
cally. Instead of one spiral, we then find a pair of counter-
rotating spirals that send out plane waves which annihilate
at the boundary [20].
Let us now return to our discussion of the phase diagram

Fig. 3. Below another critical value of the assembly veloc-
ity va, the system settles into a stationary state, where the
form of the boundary is essentially determined by its
passive mechanical properties. Indeed, in this case
filament growth and nucleation is too slow compared to
filament degradation such that the filament density is low.

0.5 1

0.5

1.0

x 10
4

6

4

2

0

FIG. 2 (color online). Directionally moving steady state solu-
tion to the dynamic equations (1)–(7). The domain moves to the
left at v ¼ 0:33Df� � 2va=5. Displayed is the distribution of

nucleators, where the density is color coded in units of ��2. The
domain boundary � is indicated by the full line. Parameter
values are vd ¼ 0, D ¼ 0, Db=Df ¼ 0:045, va=ðDf�Þ ¼ 5=6,

�dDf�
�2 ¼ 20, !a=ðDf�

2Þ ¼ 0:17, !d=ðDf�
2Þ ¼ 5=12,

!1�
4 ¼ 3:5� 10�6, �P=ðDf�

2Þ ¼ 2� 10�3, 
�=P ¼ 0:0075,

	�2=P ¼ 1:5� 10�6, and ntot ¼ 5000.
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FIG. 3 (color online). Phase diagram for Eqs. (1)–(7) as a
function of the total number of nucleators ntot and the assembly
velocity �va ¼ va=ðDf�Þ. Triangles: spirals; diamonds: direc-

tional motion; dots: breathers. Other parameters as in Fig. 2.
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Consequently, the nucleator density is roughly homoge-
nous, implying a uniform small ‘‘active filament pressure’’
on the boundary.

Above a critical assembly velocity, the system settles
into a ‘‘breather’’ state, where the system periodically
expands and deflates; see Figs. 3 and 4(c). For these values
of va, there are no instabilities of the nucleator and hence
the filament density in the orthoradial direction. Therefore,
the system expands as a result of the high active filament
pressure until it is so large that the nucleator density is
sufficiently diluted such that the supply of new filaments is

not sufficient to maintain the pressure necessary for expan-
sion. The boundary’s surface tension 
 in combination with
the external pressure P results in a reduction of the system
size until the cycle starts anew.
Finally, let us mention that for polymerization velocities

below a certain critical value, the system will collapse as
the filaments cannot compensate for the external pressure.
In summary, we have presented a method to describe the

dynamics of treadmilling filaments confined to a finite
domain by a deformable boundary. The dynamics of the
filaments is influenced by the presence of nucleators. We
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FIG. 4 (color online). Snapshots of the nucleator distribution for solutions to Eqs. (1)–(7). (a) One-armed spiral, (b) two-armed
spiral, (c) breather. Clockwise rotating spirals coexist with the counterclockwise rotating spiral solutions shown in (a) and (b).
Parameter values are (a) va=ðDf�Þ ¼ 2=3, ntot ¼ 3500, (b) va=ðDf�Þ ¼ 2=3, ntot ¼ 6000, and (c) va=ðDf�Þ ¼ 1, ntot ¼ 4000. Other

parameters as in Fig. 2.
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find that the system can spontaneously generate waves and
that these waves can lead to directional motion of the
domain. We, furthermore, find spiral waves that lead to
deformation waves of the boundary and have indicated
similarities with observations made on live cells. As sug-
gested in Refs. [23,24], deformation waves could also
result from instabilities of the leading edge dynamics
rather than of the bulk dynamics. In general, both mecha-
nisms can be expected to contribute to the observed dy-
namics. To assess their relative importance experimentally,
the coupling of the cytoskeleton to the membrane should
be modified.

It will be interesting to study in the future how much of
cellular behavior can be understood in terms of spontane-
ous cytoskeletal waves. In particular, coupling our system
to signal transduction pathways might shed new light on
cellular responses to extracellular mechanical or chemical
cues.
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