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Examining botanical trees, Leonardo da Vinci noted that the total cross section of branches is conserved

across branching nodes. In this Letter, it is proposed that this rule is a consequence of the tree skeleton

having a self-similar structure and the branch diameters being adjusted to resist wind-induced loads.
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Leonardo da Vinci observed in his notebooks that ‘‘all
the branches of a tree at every stage of its height when put
together are equal in thickness to the trunk’’ [1], which
means that when a mother branch of diameter d splits into
N daughter branches of diameters di, the following relation
holds on average

d� ¼ XN
i¼1

d�i ; (1)

where the Leonardo exponent is � ¼ 2. Surprisingly, there
have been few assessments of this rule, but the available
data indicate that the Leonardo exponent is in the interval
1:8<�< 2:3 for a large number of species [2–4]. In fact,
Leonardo’s rule is so natural to the eye that it is routinely
used in computer-generated trees [5]. Yet, alternative
analyses of the branching geometry have been proposed
based on analogies with river networks, bronchial trees,
and arterial trees [6].

Two different models have been proposed to explain
Leonardo’s rule: the pipe model [7], which assumes that
trees are a collection of identical vascular vessels connect-
ing the leaves to the roots, and the principle of elastic
similarity [8,9], which postulates that the deflection of
branches under their weight is proportional to their length.
However, none of these explanations are convincing. The
first because the portion of a branch cross section devoted
to vascular transport (i.e., the sapwood) may be as low as
5% in mature trees and it seems thus dubious that the whole
tree architecture is governed by hydraulic constraints. The
second because the postulate behind elastic similarity is
artificial, hard to relate to any adaptive advantage, and,
furthermore, it seems unlikely that trees can respond to
branch deflections.

In this Letter, an alternative explanation is offered:
Leonardo’s rule is a consequence of trees being designed
to resist wind-induced stresses. Plants are known to re-
spond to dynamic loading for a long time, a phenomenon
called thigmomorphogenesis [10,11]. In that line of think-
ing, Metzger [12] proposed in the 19th century the
constant-stress model. This model states that the trunk
diameter varies such that the bending stress due to wind

remains constant along the trunk length. The constant-
stress model has been shown to agree with observations
[13], however, its implication on the whole branching
architecture has not yet been addressed (except in the
recent study of Lopez et al. [14]). The other important
point is that constant stress might not be the best design
since it implies that breakage is more likely to occur in the
trunk or in large branches where the presence of defects is
more probable.
To address this problem, two equivalent analytical mod-

els are first considered: one discrete, the fractal model, and
one continuous, the beam model, inspired from McMahon
and Kronauer [8], with the difference that wind loads are
considered instead of the weight.
The fractal model [Fig. 1(a)] is constructed such that

lk
lkþ1

¼ N1=D;
dk
dkþ1

¼ N1=�; (2)

where lk and dk are the length and diameter of a branch at
rank k (with 1 � k � K), N is the number of daughter
branches at each branching node, � is Leonardo exponent,
and D is the fractal (Hausdorff) dimension of the tree
skeleton [2]. Here, the tree skeleton is supposed to be
self-similar such that D is uniform within the structure,
but � can depend on k.
The fractal dimension D has never been measured di-

rectly on real trees. However, the fractal dimension of the
foliage surface has been measured to lie in the interval
2:2<Dfol: < 2:8 [15] and, except for very particular ar-
chitectures, it can be shown that D ¼ Dfol:. As already
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FIG. 1 (color online). Two analytical models: (a) The fractal
tree model. (b) The continuous tapered beam model [8].
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suggested by Mandelbrot [2], it can thus be safely assumed
that 2<D< 3 [16].

The beam model [Fig. 1(b)] consists of a cantilevered
beam whose width b and thickness h taper with the curvi-
linear coordinate s (with s0 � s � 1). These two models
can be linked using the principle sketched in Fig. 1(b). It
consists in cutting the beam to form branches of approxi-
mately square cross-sections. The beam thickness is then
equivalent to the branch diameters, the ratio of width to
thickness gives the number of branches, and s corresponds
to the branch lengths (because the distance between a
branch and the tips is proportional to the branch length
for infinite branching)

dk � h; Nk � b=h� s�D; lk � s: (3)

Consider now two different types of wind loads: either a
continuous loading due to the wind on the branches with a
force per unit length qðsÞ � b or an end loading due to the
wind in the leaves with a forceQ applied in s0 equivalent to
qðsÞ ¼ Q�ðs� s0Þ. Neglecting the wind incident angle
and using the Euler-Bernoulli beam equation, the curva-
tures kðsÞ resulting from the continuous load and the end
load are found to scale, respectively, as

k� qðs0Þs0s
EI

; k�Qðs� s0Þ
EI

; (4)

with E the Young’s modulus and I � bh3 the moment of
inertia. The expression for continuous loading is only valid
for s � s0 [17]. Since the above scalings are equivalent at
leading order, the analysis will be restricted to the case of
end loading for simplicity. The maximum bending stress
occurs at the beam surface and is � ¼ Ekh=2 such that

��Qðs� s0Þ
bh2

: (5)

The probability of fracture at a given rank k can be
modeled by a Weibull distribution [18] to take into account
size effects

Pk ¼ 1� exp

�
�Vk

V0

�
�k

�0

�
m
�
; (6)

where Vk ¼ Nklk�d
2
k=4 is the volume of all branches of

rank k, �0 is the strength of the material, V0 is an arbitrary
volume taken to be V0 ¼ �l31=4 and m is the Weibull’s
modulus (typically 5<m< 20 for wood [19]). It can be
shown that, for a given probability of fracture, the lightest
design corresponds to the constant-stress model. However,
since Vk is decreasing with k, this implies that the trunk and
bottom branches are more likely to fail. As discussed in
[14], a better design is obtained when the probability of
fracture Pk is constant or increasing with k such that the
tree can regrow after a big storm. The equiprobability of
fracture is expressed as

��m � Vk � hbs: (7)

and it corresponds to � decreasing with s as observed in
trees [14,20]. When Pk is increasing algebraically with k,
the relation (7) still holds minor logarithmic correction.
Now, using (3), (5), and (7), the Leonardo exponent and

the diameter are found to depend on the fractal dimension
D and the Weibull’s modulus m

� ¼ ð3m� 2ÞDðs� s0Þ
½ðm� 1ÞDþ 1�ðs� s0Þ þms

; (8a)

h3m�2 � sðm�1ÞDþ1ðs� s0Þm: (8b)

In the case of infinite branching (i.e. K ¼ 1 or s0 ¼ 0), it
gives 1:93<�< 2:21 when 2<D< 3, for m ¼ 10. In
other words, Leonardo’s rule is recovered by assuming that
the probability of fracture due to wind-induced stresses is
constant. Note that, in (8a) and (8b), constant stress corre-
sponds to the limitm ! 1. Note also that the number N of
daughter branches at each node does not affect the result.
To assess the robustness of these predictions when the

asymmetry and stochasticity of branching, as well as the
wind incident angle are taken into account, a three-
dimensional numerical model has been developed.
Following Niklas and Kerchner [21], a tree skeleton is
recursively constructed as sketched in Fig. 2(a).
Starting with a vertical trunk of length l ¼ ltrunk ¼ 1,

parallel to the unit vector t and normal to the unit vector b,
two daughter branches of lengths l1 ¼ r1l and l2 ¼ r2l are
constructed in the plane normal to b such that their tan-
gential unit vectors t1 and t2 are obtained by rotating twith
the angles �1 and �2 around b. The new normal vectors b1

and b2 defining the successive planes of branching are then
obtained by rotating b with an angle � around t1 and t2
respectively. This branching rule is recursively applied for
K ranks, with a probability of branching p, yielding a tree
skeleton as exemplified in Fig. 2(b). The architecture of
this skeleton is parametrized by the six dimensionless
quantities: �1, �2, �, r1, r2 and p. This skeleton is self-
similar with a fractal dimension

FIG. 2 (color online). Numerical tree model: (a) Sketch of the
angles and unit vectors at a branching node. (b) Example of tree
skeleton for �1 ¼ �15�, �2 ¼ 30�, � ¼ 120�, r1 ¼ r2 ¼ 0:75,
p ¼ 1, K ¼ 10, D ¼ 2:41 [as given by (9)].
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D ¼ � ln 2

ln r
; with r ¼ r1 þ r2

2
p: (9)

Once this tree skeleton is constructed, the diameters of
each branch can be calculated. Assuming that the wind
velocity Uu (where u is a unit vector) is parallel to the
ground and uniform, the wind load on the leaves located at
the tip of the terminal branches is

Fleaf ¼ 1
2�U

2C1S0u; (10)

where � is the air density, C1 is a drag coefficient which
will be taken to be 1 without loss of generality and S0 is the
surface of the leaves assumed to be the square of the

expected terminal branch length (i.e. S0 ¼ r2ðK�1Þl2trunk).
In addition, the wind exerts also a force on each branch

such that, if n is the unit vector normal to both the wind and
the branch (i.e., n ¼ t� u= k t� u k ), the force exerted
on each branch is

F branch ¼ 1
2�U

2C2dlkt� uk2ðn� tÞ; (11)

where C2 is another drag coefficient taken to be 1, d and l
are the diameter and the length of the branch, and kt� uk2
is the square of the incident angle cosine. This force is
applied on the branch center of mass such that its moment
at the base of the branch is simplyMbranch ¼ 1

2 lt� Fbranch.

Now each branch transmits the forces and moments
applied at its extremity (either originating from upper
branches or by leaves) such that, if Ftop and Mtop are the

sum of forces and moments at a branch end, the force and
moment at the branch base are

Fbase ¼ Fbranch þ Ftop; (12a)

Mbase ¼ Mbranch þMtop þ lt� Ftop: (12b)

The moment at the base Mbase has two components: a
bending moment of intensity Mbend ¼ kMbase � tk and a
torsional moment of intensity Mtwist ¼ kMbase � tk. The
corresponding maximal bending (tensile and compressive)
and shear stresses are �bend ¼ 32

� Mbend=d
3 and �shear ¼

32
� Mtwist=d

3.

Assuming that there is a uniform probability of fracture
(1� e�1) for every rank as given by (6), the diameter of
each branch can be calculated recursively, starting from the
tips and ending with the trunk. In doing so, resistance to
bending and twisting has been considered and the wind
direction has been assumed to vary with increments of 45�.
In this calculation, the Cauchy number,CY ¼ �U2=�0;bend,

appears as the dimensionless parameter which sets the
scaling of branch diameters (but not their relative values)

such that d� Cm=ð3m�2Þ
Y ltrunk. It has been taken to be

CY ¼ 10�4 which corresponds roughly to U ¼ 40 m s�1

and �0;bend ¼ 20 MPa [19]. The other important dimen-

sionless numbers are the relative surface of leaves S0
(which sets the total height of the tree assuming that
leaves have always the same dimension whatever the size
of the tree), and the ratio of bending to shear strength
�0;bend=�0;shear taken to be equal to 5 as it is generally

observed for wood [19].
The result of such a calculation is shown in Fig. 3 for the

deterministic skeleton pictured in Fig. 2(b). To compare
these results with the theoretical predictions, the ratio
hLi=Lmax is used [8], where hLi is the average distance
from the branch tips considering all possible paths and
Lmax ¼ 1=ð1� rÞ is the mean ground-to-tips distance for
an infinitely branching tree. The ratio hLi=Lmax is equiva-
lent to (s� s0) for the beam model.
As seen in Fig. 3, the beammodel accurately predicts the

branch diameters and the Leonardo exponent. It means that
the wind incident angle and the geometric details of
branching do not affect these scalings. Note that, because
of the finite number of recursions, the slope in Fig. 3(b) is
not constant as already observed in [8].
In Fig. 4, the same simulation is run except that, at each

branching node, the angles �1, �2, � are randomly chosen
with a normal distribution of means ��1, ��2, �� and standard
deviation of 10�. Same is done for r1 and r2 of means �r1
and �r2 and standard deviation of 0.1. It results that the
Leonardo exponent is more scattered but the beam model
still predicts it correctly [Fig. 4(b)].

FIG. 3 (color online). Deterministic tree: (a) Calculated branch diameters for the skeleton shown in Fig. 2(b). (b) Normalized
average distance from the tips as a function of the diameter. (c) Calculated Leonardo exponent for each branching node (the horizontal
bars show the mean value of � at each rank). In (b) and (c), the beam model corresponds to the relations (8a) and (8b).
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Figure 4(c) shows directly the prediction of Leonardo’s
rule by comparing the total cross-sectional areas at every
rank. Depending on the particular angles defining the
branching rules, this surface can vary with a standard de-
viation of about 20% but its mean remains roughly constant
for all ranks except the last three [22]. Remarkably, the
variation of this mean is accurately predicted by the con-
tinuous beam model.

In summary, it has been shown that the best design to
resist wind-induced fracture in self-similar trees naturally
yields Leonardo’s rule. The only requirement is that trees
adapt their local growth to wind loads, a well-known
phenomenon called thigmomorphogenesis whose mecha-
nism at the cell level is still largely unknown. Here, the
relevant property of wind loads is their divergence towards
the branch tips, either because of the leaves or because the
surface exposed to wind diverges. Thus the static loads due
to the weight of fruits, snow, or ice would give similar
results.

The validity of the present model could be assessed
experimentally by examining how the branch diameters
depend on the wind peak velocity. It is predicted here

that the following relation holds: d� Cm=ð3m�2Þ
Y ltrunk,

where CY is proportional to U2. Another assessment
would be to calculate, from a real tree skeleton, the ex-
pected branch diameters and compare them to the mea-
sured ones. In this Letter, aeroelastic reconfiguration
[23], branch weight [24], and nonuniform wind profiles
[20], have been neglected for the sake of simplicity. It has
also been assumed that the tree skeleton is fractal, with
a fractal dimension 2<D< 3. Yet, the way D and
other features of the tree skeleton depend on the wind, and
on the environment in general, remains to be explored.
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