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Double perovskites such as Sr2FeMoO6 are rare examples of materials with half-metallic ground states

and a ferrimagnetic Tc above room temperature. We present a comprehensive theory of the temperature

and disorder dependence of their magnetic properties by deriving and validating a new effective spin

Hamiltonian for these materials, amenable to large-scale three-dimensional simulations. We show how

disorder, ubiquitous in these materials, affects Tc, the magnetization, and the conduction electron

polarization. We conclude with a novel proposal to enhance Tc without sacrificing polarization.
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There are very few examples of materials that exhibit
half-metallic ground states, with fully spin-polarized con-
duction electrons, together with a ferromagnetic Tc above
room temperature. This combination of properties has the
potential for an enormous technological impact in spin-
tronic applications such as tunneling magnetoresistance
devices. The two classes of materials that offer the most
promise for room-temperature applications are double per-
ovskites and Heusler alloys, both of which have several
examples with Tc well above room temperature.

The double perovskites (DPs) are of particular interest
since the perovskite family shows an amazingly rich vari-
ety of properties, including colossal magnetoresistance,
multiferroic behavior, and high Tc superconductivity. In
the long run, the ability to make heterostructures of such
multifunctional oxides is likely to open up very interesting
possibilities, provided the stoichiometry and ordering of
these materials can be controlled.

One of the best-studied half-metallic DPs is Sr2FeMoO6

(SFMO) with Tc ’ 420 K, well above room temperature
[1–3]. SFMO is but one example of a DP A2BB

0O6, which
is derived from the simple ABO3 perovskite structure by
a three-dimensional (3D) checkerboard ordering of B and
B0 ions.

From a theoretical point of view, we argue that DPs are
simple systems for understanding metallic ferromagne-
tism, despite their apparent complexity. First, in contrast
to ferromagnets like iron, there is a clear separation of the
localized (B) and itinerant degrees of freedom (coming
from B0) in the DPs. Second, in contrast to the manganites,
DPs have neither Jahn-Teller distortions nor, given the
large separation between B sites, antiferromagnetic super-
exchange that competes with double exchange. This, in
fact, is the main reason for the higher Tc’s in the DPs
compared with the manganites. Third, in contrast to dilute
magnetic semiconductors, disorder is not an essential as-
pect of the theoretical problem.

Previous theoretical work on half-metallic DPs includes
pioneering T ¼ 0 electronic structure calculations [2,3]

and model Hamiltonians analyzed using various mean-
field theories [4–6] and two-dimensional (2D) simulations
[7]. In this Letter, we present a comprehensive theory that
gives insight into the temperature and disorder dependence
of the magnetic properties of half-metallic DPs. We make
detailed comparisons with and predictions for SFMO.
Our main results are the following. (1) We show that

both the total magnetization MðTÞ and the conduction
electron polarization PðTÞ at Ef are proportional to the

magnetization MSðTÞ of localized Fe spins. This result is
significant because, while MðTÞ is much simpler to mea-
sure than PðTÞ, the latter is of crucial importance for
spintronic applications. (2) Our main theoretical advance
is the derivation and validation of an effective classical
spin Hamiltonian Heff [see Eq. (2)] for DPs, which differs
from both the Heisenberg and Anderson-Hasegawa models
[8]. We show that Heff describes the full T dependence of
the magnetization MSðTÞ and in turn that of MðTÞ and
PðTÞ. (3) We present the results of simulations of Heff on
large 3D lattices, including disorder effects, thus going
beyond all previous theoretical calculations on SFMO.
(4) We compute MðTÞ and Tc, using microscopic band-
structure parameters as input, and see how these are af-
fected by deviations from stoichiometry and by antisite
(AS) disorder, ubiquitous in real materials. Ours is the first
theory to show that Tc is insensitive to AS disorder, in
excellent agreement with experiments, even though Mð0Þ
is suppressed. (5) We conclude with a novel proposal to
increase Tc of SFMO, which in turn enhances the polar-
ization PðTÞ at high temperatures, by using a combination
of excess-Fe disorder and La doping to maintain carrier
density.
Model Hamiltonian.—For a large Hund’s coupling JH,

the Fe3þ (3d5) site has an S ¼ 5=2 ‘‘core spin’’ or local
moment. TheMo5þ (4d1) contributes a t2g electron, which

hybridizes via O with the Fe t2g states. Symmetry implies

that d�� electrons delocalize only in the ð�;�Þ plane [9].

Thus, the motion of electrons in the 3D system decouples
into three 2D planes. The ‘‘double-exchange’’ Hamiltonian

PRL 107, 257201 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

16 DECEMBER 2011

0031-9007=11=107(25)=257201(4) 257201-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.107.257201


[5,7] describing itinerant electrons interacting with core
spins is

H ¼ �t
X

hi;ji;�
ð�i�dyi#cj� þ H:c:Þ

� t0
X

hj;j0i;�
cyj�cj0� þ �

X

i

dyi#di#: (1)

Here, di�ðci�Þ are fermion operators on the Fe (Mo) sites
with spin �. At the Fe sites i, we choose local axes of
quantization along Si and Pauli exclusion prohibits an "
electron. For all the Mo sites j, we choose the same
(global) axis of quantization. The orientation ð�i; ’iÞ
of the classical spins Si then affects the Mo-Fe hopping
via �i" ¼ � sinð�i=2Þ expði’i=2Þ and �i# ¼ cosð�i=2Þ�
expð�i’i=2Þ.
The parameters in H are the hopping amplitudes t

between nearest-neighbor (Fe-Mo) sites, t0 between two
Mo sites, and the charge transfer energy � between Fe t2g#
and Mo t2g states; see Fig. 1(a). For now, we choose t ¼ 1

as our unit of energy [10]. Symmetry dictates t0 > 0. We
choose t0=t ¼ 0:1 and �=t ¼ 2:5, using realistic band pa-
rameters for SFMO as input [3]. We will show below that t
sets the scale for the magnetic Tc and that choosing
t ¼ 0:27 eV, consistent with Ref. [3], leads to the experi-
mental Tc ¼ 420 K of SFMO.

We use exact diagonalization (ED) to solve the quantum
mechanics of ‘‘fast’’ itinerant electrons moving in the
background of ‘‘slow’’ S ¼ 5=2 spins, for which we use
a T � 0 classical Monte Carlo (MC) simulation. The sepa-
ration of time scales is justified below. Using standard
ED-MC techniques, supplemented by T ¼ 0 variational
calculations, we obtain the results shown in Figs. 1 and 2.
These results are limited to 2D systems because of the
computational cost of ED. Wewill present below results on
large 3D systems using a different technique.
We show in Fig. 1(b) the band structure and the spin-

resolved density of states (DOS) N�ðEÞ for the ferrimag-
netic ground state of SFMO with n ¼ 0:33 electrons per
unit cell per plane. These results are consistent with pho-
toemission experiments [11]. We find that the conduction
electrons, with magnetization MelðT ¼ 0Þ ¼ 1 �B (per
unit cell), are polarized opposite to the Fe spins, with
core spin magnetization MSð0Þ ¼ 5 �B. The half-metallic
ground state, with N"ð0Þ ¼ 0 and N#ð0Þ � 0, has a net

magnetization Mð0Þ ¼ MSð0Þ �Melð0Þ ¼ 4 �B.
We see from Fig. 2(a) thatMSðTÞ,MelðTÞ, and hence the

total magnetization MðTÞ ¼ MSðTÞ �MelðTÞ all have
essentially the same T dependence. Another quantity of
great interest is the conduction electron polarization PðTÞ

FIG. 1 (color online). (a) Schematic showing energy levels at
transition metal sites in two unit cells (formula units) of SFMO.
The Fe sites have localized S ¼ 5=2 core spins, treated as
classical vectors with orientation ð�; ’Þ. The parameters t, t0,
and � of the Hamiltonian (1), governing the dynamics of the
itinerant electrons in t2g orbitals, are also shown. (b) Calculated

electronic structure EðkÞ and the spin-resolved DOSs N"ðEÞ and
N#ðEÞ in the ferrimagnetic ground state with all core spins up.

Note the half-metallic ground state in SFMO with conduction
electrons polarized opposite to core spins.

FIG. 2 (color online). (a) The core spin magnetization MSðTÞ,
conduction electron magnetizationMelðTÞ, and polarization PðTÞ
at Ef calculated using the ED-MC method. Both MSðTÞ and

MelðTÞ are normalized to their T ¼ 0 values. We conclude that
all magnetic properties are proportional toMSðTÞ. (b) Spin-wave
dispersion of the full Hamiltonian H, obtained by exact diago-
nalization, compared with that of the effective Hamiltonian Heff .
Inset: Fe-Mo lattice showing the nearest-neighbor (J1) and next-
nearest-neighbor (J2) interactions of Heff . (c) The normalized
magnetization MðTÞ for three Hamiltonians: H, Heff , and the
Heisenberg model. These results are obtained on 82 systems with
error bars no larger than the symbol size. (d) Magnetization
MðTÞ from 3D simulations of Heff on 163 systems. The infinite
system Tc is obtained from finite size scaling [13].
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at Ef which determines the tunneling magnetoresistance.

This is defined by PðTÞ¼ ½N#ð0Þ�N"ð0Þ�=½N#ð0ÞþN"ð0Þ�,
with E ¼ 0 in the DOS measured from Ef. In Fig. 2(a), we

also see that PðTÞ also follows the T-dependent MSðTÞ.
Effective Spin Hamiltonian.—The results of Fig. 2(a)

imply that, if we had a reliable theory for the core spin
magnetization MSðTÞ, we could understand all the mag-
netic properties of SFMO, including the polarization PðTÞ.
With this motivation, we derive an effective Hamiltonian
Heff for the core spins by generalizing the two-site
Anderson-Hasegawa [8] analysis for manganites to double
perovskites.

To deriveHeff , we find the exact solution of the fullH of
Eq. (1) for one electron in two unit cells [12]. For a given
t2g symmetry, the Hilbert space has three states per unit

cell: Fe t2g# and Mo t2g;";#, leading to a 6� 6matrix for two

unit cells. We analytically find its lowest eigenvalue as a
function of the angle ð�i � �jÞ between core spins.

Working in two different geometries, we find [13] the
nearest-neighbor (J1) and next-nearest-neighbor (J2) inter-
action energies; see the inset in Fig. 2(b). Expressing these
in terms of Si � Sj, where each Si is a unit vector, we obtain

the effective Hamiltonian

Heff ¼ �J1
X

hi;ji
F1ðSi � SjÞ � J2

X

hhi;jii
F2ðSi � SjÞ; (2)

where the functions F1ðxÞ ¼ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2x
pp

and F2ðxÞ ¼
ð5þ ffiffiffi

5
p Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2x

pp
. Our two-unit cell analysis gives

explicit expressions [13] for J1 and J2, both of which are
ferromagnetic, with their scale set by the kinetic energy t of
delocalization. We emphasize that the double square-root
form of Heff is quite different from the (single square-root)
Anderson-Hasegawa model.

Next, we need to understand how we can use Heff going
beyond the simple two-unit cell derivation. Specifically:
(i) How can we relate J1 and J2 to t, t

0,�, and the filling n?
(ii) To what extent does Heff capture the essential physics
of the full Hamiltonian H?

The dependence of J1 and J2 on microscopic parameters
can be obtained by matching the spin-wave spectra of Heff

andH. This comparison is shown in Fig. 2(b) along certain
symmetry directions. We find spin-wave dispersion for H
using ED to compute the energy of electrons moving in a
‘‘frozen’’ spin-wave background. The low energy scale of
0:1t for spin dynamics [see Fig. 2(b)] justifies a posteriori
our assumption of slow spins and fast electrons, whose
bandwidth is of the order of t [see Fig. 1(b)]. The same
separation of energy scales also justifies the use of
T-independent exchange couplings J1 and J2 for all
T < Tc, as we discuss next.

To validate the effective model Heff , we show in
Fig. 2(c) that it reproduces the magnetization MðTÞ of
the full Hamiltonian H over the entire range of tempera-
tures. In contrast, the Heisenberg model HHeis gives quite

different results, except in the T ! 0 limit with small spin
deviations. Thus,MðTÞ for the DP’s cannot be described by
a Heisenberg model, while Heff provides an excellent
description of the ED-MC result.
The classical Heff can be easily simulated on large 3D

lattices, unlike the full H, and the results are shown in
Fig. 2(d). We note the linear drop inMðTÞ at low T, due to
classical spin waves, followed by a rapid suppression ofM
at the phase transition [14]. Our MðTÞ results are in quali-
tative agreement with recent experiments [15]. We esti-
mate Tc in the infinite volume limit using the finite size
scaling of results obtained on L3 systems with L ¼ 8, 12,
and 16 [13]. For t0=t ¼ 0:1 and �=t ¼ 2:5, we find Tc ¼
0:14t. Comparing this to Tc ¼ 420 K for pure SFMO, we
obtain t ¼ 0:27 eV, consistent with Ref. [3].
Disorder.—Heff permits us to model various kinds of

disorder and deviations from stoichiometry [13]. (i) Excess
Fe is modeled with an extra spin (at a Mo site) that interacts
with its neighboring spins with a large antiferromagnetic
(AF) superexchange SðSþ 1ÞJAF ’ 34 mev [16].
(ii) Excess Mo is modeled by removing an Fe spin from
the lattice. Both (i) and (ii) also require reevaluation of J1
and J2 due to the change in carrier density n. (iii) Here, we
focus on antisite (AS) disorder, the most common form of
disorder in DPs, with Fe and Mo interchanged and no
change in n.
We see from Fig. 3 that AS disorder systematically

reduces Mð0Þ without affecting Tc, in excellent agreement
with experiments [17]. We quantify AS disorder using � as
the fraction of Fe atoms that are on the Mo sublattice. The
observed magnetization Mð0Þ½1� 2�� arises from the loss
of two moments for each AS defect—one from the moment
lost at the Mo (on the Fe sublattice) and the other from the
Fe (on the Mo sublattice) antiferromagnetically coupled to
its neighbors via JAF.
There are two opposite effects of AS disorder on Tc

that appear to balance each other. The strong Fe-Fe
superexchange JAF pins the spins surrounding the Fe defect
and makes the magnetic order more robust against thermal

FIG. 3 (color online). (a)MðTÞ, normalized by theMð0Þ for the
disorder-free system, for various values of AS disorder � (see the
text). (b) Theoretical results for Tc and T ¼ 0 magnetization
Mð0Þ (both normalized with respect to their disorder-free values)
compared with experiments [17].Mð0Þ drops like 2�, while Tc is
insensitive to AS disorder.

PRL 107, 257201 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

16 DECEMBER 2011

257201-3



fluctuations. On the other hand, the Mo defect leads to
broken J1 and J2 bonds which weaken the magnetism. The
net effect is a Tc insensitive to � for moderate levels of AS
disorder, which is exactly what experiments observe. We
note that, while the loss ofMð0Þ with AS disorder has been
explained earlier [18–20], ours is the first theory to cor-
rectly account for Tcð�Þ; previous theories either found a
drop [18] in Tc or an increase [5].

Raising Tc.—We conclude with a proposal to raise the
ferrimagnetic Tc without sacrificing the conduction elec-
tron polarization P; see Fig. 4. In short, it involves adding
excess Fe and compensating for the loss of mobile carriers
by La substitution on the Sr site.

To see how this works, let us first consider excess Fe
without any compensation: Sr2Fe1þyMo1�yO6. In this

case, MSð0Þ decreases like y due to the AF alignment of
excess spins. Tc also decreases with y because the loss of
carriers n ¼ ð1� 3yÞ=3 dominates over the enhanced pin-
ning of moments by JAF in the vicinity of defects. For the
uncompensated case, the calculated TcðyÞ in Fig. 4(b) is in
reasonable agreement with experiments [21].

We can compensate for the carriers by A-site substitu-
tion: LaxSr2�xFe1þyMo1�yO6, with electron density n ¼
ð1þ x� 3yÞ=3 per plane. Choosing x ¼ 3y counters the
doping-dependent drop in Tc that dominated above, and we
find that Tc can be significantly enhanced over that of pure
SFMO due to just the local pinning of moments at excess-
Fe sites. This increase in Tc goes hand-in-hand with an
unchanged MSð0Þ; see Fig. 4(a).

We also note that the polarization Pð0Þ remains 100%.
When the Fe spins cant at finite T, electrons depolarize by
the mixing of up and down states; however, no such pro-
cesses are permitted at T ¼ 0, even in a disordered Fe-rich
system. We have checked, using the full Hamiltonian (1),
that, even though the strict proportionality between MSðTÞ
and PðTÞ is not observed in the presence of disorder, the
high temperature P is still enhanced over the clean system
due to the large increase in Tc.

An alternative way to enhance Tc is to add mobile
electrons using La doping, which, however, has been
shown to lead to a considerable increase in AS disorder
[22]. In principle, compensated doping as proposed here
should introduce less AS disorder [13].
In conclusion, while we have focused here on SFMO,

our theory provides a general framework for understanding
half-metallic ferrimagnetism in DPs. Interesting directions
for future work include A-site substitution; Coulomb cor-
relations on B0, which may become increasingly important
for larger carrier concentrations; and spin-orbit coupling
on B0 for 5d elements.
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FIG. 4 (color online). (a) Core spin magnetization MSðTÞ for
LaxSr2�xFe1þyMo1�yO6 for uncompensated ðx; yÞ ¼ ð0; 0:25Þ
and compensated ðx; yÞ ¼ ð0:75; 0:25Þ Fe-rich systems. (b) The
uncompensated TcðyÞ is compared with experiments [21]. Our
prediction for the compensated ðx ¼ 3yÞ system shows large
enhancement in Tc.
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