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We demonstrate a hybrid architecture consisting of a quantum dot circuit coupled to a single mode of

the electromagnetic field. We use single wall carbon nanotube based circuits inserted in superconducting

microwave cavities. By probing the nanotube dot using a dispersive readout in the Coulomb blockade and

the Kondo regime, we determine an electron-photon coupling strength which should enable circuit QED

experiments with more complex quantum dot circuits.
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An atom coupled to a harmonic oscillator is one of the
most illuminating paradigms for quantum measurements
and amplification [1]. Recently, the joint development of
artificial two-level systems and high finesse microwave
resonators in superconducting circuits has brought the
realization of this model on a chip [2,3]. This ‘‘circuit
quantum electrodynamics’’ architecture allows us, at least
in principle, to combine circuits with an arbitrary complex-
ity. In this context, quantum dots can also be used as
artificial atoms [4,5]. Importantly, these systems often
exhibit many-body features if coupled strongly to Fermi
seas, as epitomized by the Kondo effect. Combining such
quantum dots with microwave cavities would therefore
enable the study of a new type of coupled fermionic-
photonic system.

Cavity quantum electrodynamics [6] and its electronic
counterpart circuit quantum electrodynamics [1] address
the interaction of light and matter in their most simple
form, i.e., down to a single photon and a single atom (real
or artificial). In the field of strongly correlated electronic
systems, the Anderson model follows the same purified
spirit [7]. It describes a single electronic level with on site
Coulomb repulsion coupled to a Fermi sea. In spite of its
apparent simplicity, this model allows us to capture non-
trivial many-body features of electronic transport in nano-
scale circuits. It contains a wide spectrum of physical
phenomena ranging from resonant tunneling and
Coulomb blockade to the Kondo effect. Thanks to progress
in nanofabrication techniques, the Anderson model has
been emulated in quantum dots made out of two-
dimensional electron gas [8], C60 molecules [9] or carbone
nanotubes [10]. Here, we combine the two above situ-
ations. We couple a quantum dot in the Coulomb blockade
or in the Kondo regime to a single mode of the electro-
magnetic field and take a step further towards circuit QED
experiments with quantum dots.

Low frequency charge transport in quantum dots in the
Coulomb blockade or Kondo regime has been studied in
exquisite detail [10,11]. However, their dynamic aspects
have remained to a great extent unexplored so far. Previous

studies have tackled the problem in terms of photoassisted
electron tunneling [12,13]. Here, we focus on the disper-
sive effect of the quantum dot on the microwave field. In
order to enhance the electron-photon interaction which
would be otherwise too small to be detected, we place
our quantum dot circuit inside an on-chip microwave cav-
ity as depicted in Fig. 1(a). One important aspect of our
approach is the implementation of ‘‘wires’’ which go in-
side the cavity (see Fig. 1). A source (S) and a drain (D)
electrode are used to drive a dc current through the

FIG. 1 (color online). (a) Schematics of the quantum dot
embedded in the microwave cavity. (b) Scanning electron micro-
scope (SEM) picture in false colors of the coplanar waveguide
resonator. Both the typical coupling capacitance geometry of one
port of the resonator and the 3-terminals geometry are visible.
(c) False colors SEM picture of a SWNT dot inside an on-chip
cavity embedded in a schematics of the measurement setup.
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quantum dot. A gate electrode (G) is used to control in situ
the position of the energy levels on the dot. At the same
time, a microwave continuous signal in the 4–8 GHz range
is sent to one port of the cavity and amplified through the
other port with room temperature microwave amplifiers.
Both quadratures of the transmitted signal are measured.
The stability of our setup allows us to detect phase changes
of less than 1 mrad. The temperature of the experiment is
1.5 K. As shown in Fig. 1(d), we use single wall carbon
nanotubes (SWNTs) embedded in superconducting micro-
wave on-chip cavities in order to implement the model
situation of Fig. 1(a). The nanotubes are grown from
catalyst pads placed inside the gap of our
Nbð150 nmÞ=Ptð25 nmÞ 11.125 mm long cavities [see
Fig. 1(b)–1(d)], at an antinode of the electric field (more
details can be found in the Supplemental Material [14]).
SWNTs are ideally suited to implement the kind of experi-
ments we discuss here. They can be contacted with normal
[10], superconducting [15–17] or ferromagnetic [18,19]
materials to form various kinds of hybrid systems. Here,
we investigate the most simple case, i.e., a single quantum
dot connected to two normal metal leads and capacitively
coupled to a side gate electrode, as shown in Fig. 1(c).
However, our scheme can readily be generalized to more
complex circuits like double quantum dots.

The phase of the microwave signal transmitted through
the cavity is particularly sensitive to the presence of the
quantum dot circuit. Figure 2(a) displays the color scale
plot of the low frequency differential conductance of one
particular device as a function of the source-drain voltage
Vsd and the gate voltage Vg. We observe the characteristic

‘‘Coulomb diamonds’’ with resonant lines in the Vsd � Vg

plane as well as the characteristic ‘‘Kondo ridge’’ at zero
bias from Vg ¼ �2:5 V to Vg ¼ �2:0 V, signalling the

emergence of the Kondo effect. As shown in Fig. 2(c) by
the black line, the conductance for Vg ¼ �2:32 V peaks

up to 0:75� 2e2=h, indicating a well-developed Kondo
resonance. The corresponding variations of the phase of
the microwave signal in the vicinity of the cavity reso-
nance, at 4.976 GHz, are displayed as a function of Vsd and
Vg in the color scale plot of Fig. 2(b). Essentially all the

spectroscopic features observed in the conductance are
visible in the phase spectroscopy. In particular, a similar
peak at zero bias as in the dc conductance is observed as
shown by the red line in Fig. 2(c). It corresponds to a
variation of about 2� 10�3 rad which is not proportional
to the dc conductance in general as shown in Fig. 2(c).
The observation of the Kondo resonance in the phase of

the microwave signal shows that the fermionic and pho-
tonic systems are coupled. Our Kondo dot-cavity system
has to be described by an extension of the Anderson model,
known as the Anderson-Holstein model which has been
devised to treat quantum impurities coupled to phonons.
Our ‘‘photonic’’ Anderson-Holstein Hamiltonian reads:

H¼HdotþHcavþð�KN̂Kþ�K0N̂K0 Þðâþ âyÞ with �KðK0Þ
and N̂KðK0Þ, respectively, the electron-photon coupling con-
stant and the number of electrons for each KðK0Þ orbital of
the nanotube dot (which arise from the band structure of
nanotubes), â being the photon field operator. The coupling
constants �KðK0Þ arise from the capacitive coupling of the

nanotube energy levels to the central conductor of the
cavity. The terms Hdot and Hcav are the standard
Anderson Hamiltonian of a single energy level coupled
to fermionic reservoirs and the standard Hamiltonian of a
single photon mode coupled to a photonic bath. As shown
in Fig. 3(a), the capacitive coupling between the cavity and
the dot induces oscillations of the electronic level. There is
also an indirect coupling through oscillations of the bias
between source and drain, as indicated by the dashed lined
edges of the Fermi seas in Fig. 3(a). The resonator allows
us to probe both the in and out-of-phase response of the
dot. Both the frequency and the width in energy of the
bosonic mode are affected by the mutual interaction be-
tween the electronic and photonic systems. Since our
cavity contains a large number of photons (about 10 000
at �60 dBm of input power), it is justified to use classical
electrodynamics to describe the coupled systems. The
circuit element corresponding to the quantum dot has a
complex admittance Ydotð!Þ, following the spirit of the
scattering theory of ac transport in mesoscopic circuits
[20,21]. To leading order with respect to the energy scales
of the dot, one gets Ydotð!Þ � �=Rdot þ jCdot!. The in-
phase part is proportional to the differential conductance
1=Rdot of the dot and stems from the residual asymmetric
ac coupling of the leads S and D to the cavity. The out-of-
phase part Cdot corresponds to a capacitance. We model the
resonator as a discrete RLC circuit with a damping resistor

FIG. 2 (color online). (a) Color scale plot of the differential
conductance in units of 2e2=h measured along three charge
states exhibiting the conventional transport spectroscopy. A
Kondo ridge is visible at zero bias around Vg ¼ �2:3 V.

(b) Color scale plot of the phase of the microwave signal at f ¼
4:976 GHz, measured simultaneously with the conductance of
Fig. 2(a). (c) Differential conductance and phase of the trans-
mitted microwave signal at f ¼ 4:976 GHz as a function of
source-drain bias Vsd for Vg ¼ �2:32 V.
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R coupled via coupling capacitors to external leads. The
corresponding frequency broadening and frequency shift
read �fD � �=ð2CresRdotÞ and �fR � �Cdotf0=ð2CresÞ,
respectively, where f0 is the resonance frequency and
Cres is the capacitance of the resonator. Figure 3(b) shows
how to directly measure �fD and �fR. The top panel
displays the calculated variations of the phase close to a
single cavity resonance when a finite �fD or �fR are
included (in red [medium gray] and blue [dark gray] lines,
respectively). The reference curve (for �fD ¼ �fR ¼ 0) is
in black dashed lines. The lower panel shows that, sub-
tracting the reference curve, a finite �fD affects the odd
part of the phase contrast curve (red [medium gray] curve)
whereas �fR affects its even resonant part ( blue [dark
gray] curve). From these curves, �fR and �fD can be
directly measured from the area of the blue [dark gray]
curve and the area of half of the red [medium gray] curve,
respectively. The corresponding experimental curves are
shown in Fig. 3(c) for Vg ¼ �2:44 V (on the Kondo

ridge), taking the point Vg ¼ �1:85 V and Vsd ¼ 0 mV

as a reference. We observe a resonance at 4.976 GHz with a
quality factor of about 160 for the even part in the blue
[dark gray] curve. The oscillations of the odd part in the red
[medium gray] curve correspond to residual imperfections
of our amplification line. We measure directly �fR and
�fD by integrating the whole blue [dark gray] curve and
half of the red [medium gray] curve (the positive part)

We now focus on Cdot. This quantity is a direct mea-
surement of the charge susceptibility of the electronic
system. For a single particle resonance with width �, the

scattering theory [20,21] predicts Cdot ¼ 2e2=�� at reso-
nance, which amounts to reexpressing the spectral density
of the single energy level coupled to the fermionic leads
in terms of a quantum capacitance. If electron correlations
are present, the situation changes. In the Coulomb block-
ade regime as well as in the Kondo regime, one expects a
reduction of the capacitance on a peak with respect to that
of a single particle resonance with the same width [22–24].
The measured even part of the phase contrast as a

function of frequency and gate voltage is presented in
Figs. 4(a) and 4(c) in color scale. We investigate both the
Coulomb blockade (left panels) and the Kondo regime
(right panels) for the same device by tuning it in different
gate regions. The point at Vg ¼ 2:4 V (Vg ¼ �1:85 V)

and Vsd ¼ 0 mV is our phase reference for the Coulomb
blockade and the Kondo regime, respectively. The
Coulomb blockade peaks (transport spectroscopy not
shown) are visible as two elongated pink [light-medium

FIG. 3 (color online). (a) Capacitive coupling of the quantum
dot to the cavity. Both the fermionic leads and the quantum dot
are coupled to the resonator, resulting in an ac modulation of
both Vsd and Vg (shadings). (b) Upper panel, calculated fre-

quency dependence of the microwave signal phase for a standard
resonance. Reference resonance (black dashed line), shifted by
�fR (blue [dark gray] line) as a result of dispersion and broad-
ened by �fD (red [medium gray] line) as a result of dissipation.
Lower panel: the even part (blue [dark gray] curve) and odd part
(red [medium gray] curve) as a function of frequency. (c) Even
and odd parts of the phase contrast �� as a function of frequency
on the coulomb peak at Vg ¼ �2:44 V on the spectroscopy

of Fig. 2. The even part exhibits a resonance centered on f ¼
4:976 GHz. The odd part shows residual modulation due to
imperfection in the amplification lines.

FIG. 4 (color online). (a) Color scale plot of the even part of
the phase contrast �� of two Coulomb peaks as a function of the
gate voltage Vg and the frequency of the microwave signal in the

vicinity of the cavity resonance. �� is taken with respect to a
reference phase in the empty orbital at Vg ¼ 2:4 V. (b) Gate

dependence of the frequency shift (blue [dark gray] dots) and the
frequency broadening (red [medium gray] dots) of the cavity
mode extracted, respectively, from the area under the even part
[Fig. 4(a)] and the area under half of the corresponding odd part.
Formulae of the main text for �fR (light blue [light gray] line)
and �fD (orange [medium-light gray] line) give C0 ¼ 18 aF,
� ¼ 0:003. Comparison with EOM theory (dashed dark green
line) and Bethe ansatz (horizontal dashed purple line). (c) Color
scale plot of the even part of the phase contrast �� of the Kondo
spectroscopy shown in Fig. 2 as a function of the gate voltage Vg

and the frequency f. The line cut corresponds to the curves of
Fig. 3(c). (d) Gate dependence of the frequency shift (blue [dark
gray] dots) and the frequency broadening (red [medium gray]
dots) of the cavity mode extracted, respectively, from the area
under the even part [Fig. 4(c)] and the area under half of the
corresponding odd part. Formulae of the main text for �fR (light
blue [light gray] line) and �fD (orange [medium-light gray] line)
give C0 ¼ 22 aF, � ¼ 0:004.
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gray] spots in the f� Vg plane centered at 4.976 GHz

which span over 50 MHz. The measured �fR and �fD are
shown in Fig. 4(b) in blue [dark gray] and red [medium
gray] dots, respectively. They modulate like Coulomb
blockade peaks up to 15 and 5 kHz, respectively. The
dispersive shift �fR can be directly translated into a ca-
pacitance from f0 ¼ 4:976 GHz and Cres ¼ 0:7 pF, which
are known from our setup. A comparison with the scaled
conductance is shown in light blue [light gray] line using
the expression C0f0=ð2CresÞ � dI=dV � h=2e2 for �fR
with C0 ¼ 18 aF. The electron-photon coupling strength
can be directly evaluated from these measurements.
Indeed, the expected capacitance change for the quantum
dot can be calculated using an equation of motion (EOM)
technique for the Green’s functions. It can also be eval-
uated using the Bethe ansatz on the Coulomb peaks at T ¼
0. Therefore, the measured capacitance change �Cdot of
the dot is directly related to the calculated Cth one by
�Cdot ¼ �2

acCth [24]. The couplings �KðK0Þ in our on-chip

Anderson-Holstein Hamiltonian can be calculated from
�KðK0Þ ¼ e�acVrms. In the above expression, Vrms corre-

sponds to the rms voltage of a single photon in the cavity
mode [2] and e to the elementary charge. As shown in
Fig. 4(b), the EOM theory, in green dashed lines, accounts
well for our measurements and agrees well on the peaks
with the Bethe ansatz result [24]. From this, we extract
�ac � 0:3, which leads to �KðK0Þ � 140 MHz. The Kondo

ridge of Fig. 2 is visible as two merged elongated pink
[light-medium gray] spots. The corresponding measured
�fR and �fD are shown in Fig. 4(d). They both modulate
up to 30 kHz and 60 kHz, respectively, as the gate voltage
sweeps the energy levels of the dot. In particular, we
extract Cdot of 16 aF for the Kondo ridge at Vg ¼
�2:32 V. This allows us to provide another estimate for

�KðK0Þ from �KðK0Þ � eVrms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cdot=CKondo

p

. We use CKondo ¼
4e2=�TK � 200 aF as the upper bound of the capacitance
expected for the Kondo ridge, TK being the full width at
half maximum of the Kondo peak as measured from
Fig. 2(c) [25]. Consistently with the previous estimate,
we get �KðK0Þ � 140 MHz. As expected [26], �fD is well

accounted for with �=ð2RdotCresÞ, with � ¼ 0:004, using
the measured dI=dV ¼ 1=Rdot (see orange [medium-light
gray] line in Fig. 4(d), we present a similar curve in
Fig. 4(b) for � ¼ 0:003). Interestingly, the empirical for-
mula shown by light blue [light gray] line for C0 ¼ 22 aF
is in good agreement with the measured �fR in the Kondo
regime. Even though this might arise from nonuniversal
features of the Anderson Hamiltonian, the observation of a
finite Cdot is consistent with the participation of the K and
K0 orbitals which naturally lead to the high Kondo tem-
perature observed here [27,28]. Like for singly occupied
closed double quantum dots [29], a finite capacitance
resembling the conductance is expected if �K � �K0 due
to the finite orbital susceptibility of the dot in the Kondo
regime [30].

In conclusion, our method can be generalized to many
other types of hybrid quantum dot circuits [31–33]. The
measured coupling is similar to the ones demonstrated
recently in superconducting circuits and can readily be
used to probe the quantum regime for the microwave
cavities. Generally, our findings pave the way to circuit
quantum electrodynamics with complex open quantum
circuits. They could be used, for example, to ‘‘simulate’’
on a chip other aspects of the Anderson-Holstein
Hamiltonian like polaronic effects.
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Note added.—After submission of our Letter, we be-

came aware of two related works in which a double quan-
tum dot was coupled to a microwave cavity [34] or to a
radio-frequency resonator [35].

*To whom all correspondence should be addressed.
kontos@lpa.ens.fr

[1] A. A. Clerk et al., Rev. Mod. Phys. 82, 1155 (2010).
[2] A. Wallraff et al., Nature (London) 431, 162 (2004).
[3] I. Chiorescu et al., Nature (London) 431, 159 (2004).
[4] T. Yoshie et al., Nature (London) 432, 200 (2004).
[5] J. P. Reithmaier et al., Nature (London) 432, 197 (2004).
[6] J.-M. Raimond, M. Brune, and S. Haroche, Rev. Mod.

Phys. 73, 565 (2001).
[7] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,

Rev. Mod. Phys. 68, 13 (1996).
[8] D. Goldhaber-Gordon et al., Nature (London) 391, 156

(1998).
[9] N. Roch et al., Nature (London) 453, 633 (2008).
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[20] M. Büttiker, A. Prêtre, and H. Thomas, Phys. Lett. A 180,
364 (1993).

[21] A. Prêtre, H. Thomas, and M. Büttiker, Phys. Rev. B 54,
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