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We investigate the correlation effect in the quasi-one-dimensional electron-hole (e-h) system under

thermal equilibrium. A self-consistent screened T-matrix approximation developed here enables the

description of an e-h pair under any ionization ratio, the portion of quasielectrons or quasiholes moving

almost freely. Our phase diagram on the ionization ratio provides a unified description of exciton Mott

physics from the low-density exciton gas towards the high-density electron-hole plasma, and predicts a

first order transition at low temperature. The interband optical absorption-gain spectra are also evaluated,

which succeeded in explaining semiquantitatively all aspects of the recent experimental observations in

the strongly photoexcited quantum wires.
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The Mott metal-insulator transition or crossover [1] is a
fundamental problem in many body theory, which is in-
deed commonly found in various systems in different
fields, e.g., electron-hole (or semimetallic) systems, doped
semiconductors, transition-metal compounds, organic sol-
ids, quantum plasmas, liquid metals, ultracold atom gases,
nuclear matters, and quark-gluon plasmas [2]. Nowadays,
Mott physics is most intensively studied in Hubbard mod-
els, i.e., in lattice systems with short-range interaction, and
its breakthrough was brought by the establishment of
global phase diagrams [3]. Similarly, for many of the
continuum Mott systems, the global phase diagrams lead
to another breakthrough. In such cases, the long-range
Coulomb interaction is expected to play a crucial role, as
was argued by Mott himself [1]. This open issue is studied
in this Letter by the simplest model in quasi-one-
dimension (quasi-1D), which consists of an equal number
of electrons and holes. We succeed in drawing the global
phase diagram for the exciton Mott crossover or transition
between the metallic electron-hole (e-h) plasma and insu-
lating exciton gas on the plane of electron (or equivalently
hole) density n and temperature T.

Such quasi-1D e-h systems also attract attention as
candidates of highly efficient laser devices [4–10], since
free-carrier theories [11,12] predict that the divergent den-
sity of states (DOS) at the band edge gives rise to the low-
threshold and high-differential optical gain. However, this
may no longer be valid once the interaction effect is
relevant: the Mott crossover or transition [13–17], which
is a prerequisite for the optical gain by the e-h plasma,
might be hindered by the strong enhancement of excitonic
correlation by the spatial confinement [18,19]. Further,
Ref. [16] even argues the absence of the Mott crossover
due to the non-Fermi-liquid nature of 1D, which, however,
contradicts the most recent experimental observations
[9,10]. Our global phase diagram settles this long-standing
controversy, and marks a milestone in the development of
quasi-1D laser devices.

The exciton Mott transition or crossover can be classi-
fied into three types. One is a crossover between exciton
gas and e-h plasma [20] at high T under the variation of n,
which is observed as a disappearance of the excitonic peak
in the interband optical absorption spectra [21], when n
exceeds the so-called Mott density. The second one is the
first order phase transition accompanied by an inhomoge-
neous coexisting region, which is characterized by the
n-independent e-h chemical potential, the sum of the
electron and the hole chemical potentials, � ¼ �e þ�h

[22,23]. Such coexistent phase is observed in the strongly
photoexcited indirect-gap semiconductors. The last one,
which we call pure Mott transition, shows a discontinuity
in the ionization ratio as well as � at a critical value of n,
accompanied by a hysteresis behavior. This discontinuity
was observed recently in the type II quantum well [24],
which is, however, only poorly examined theoretically
[25].
To give a perspective of the Mott transition or crossover

in quasi-1D e-h systems, we need a novel theoretical
scheme which can capture all of the above three aspects
of Mott physics on equal terms. The screened self-
consistent T-matrix approximation is used here, in which
self-energies, T matrices, and screening parameters are
determined in a consistent manner. Although similar kinds
of formalism were established substantially in the 1980s
[26], it was applied to realistic bulk (three-dimensional)
e-h systems only recently [27] due to numerical limitation.
As summarized in Fig. 1, we start from a guess of self-

energies of electron and hole, and iterate the following four
steps until the self-energies converge. First, the single
particle Green’s function, Gaðk;!Þ, is evaluated via the
Dyson equation, where k is the wave number in the axial
direction, ! is the frequency, and a ¼ e; h represent elec-
tron and hole. The chemical potential �a is determined in
such a way that the electron-hole density calculated from
Gaðk;!Þ equals n. Next, we evaluate the screened
Coulomb interaction potential using a quasistatic
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plasmon-pole approximation (PPA) [13] including only
the quasielectron and quasihole contributions. In fact,
the screening parameter is estimated as � ¼
ð�kBTÞ�1

P
a

R
fa;kð1� fa;kÞdk with Fermi distribution

functions for the quasielectron and the quasihole, fa;k ¼
ðeð�a;k��aÞ=kBT þ 1Þ�1, where �a;k is determined by solving

Re½G�1
a ðk; �a;k ��aÞ� ¼ 0. In the third step, T matrices

for e-e, h-h, and e-h scatterings are evaluated within the
ladder approximation for the screened interaction. The
final step is devoted to a new guess of self-energies by
collecting terms depicted by the Feynman diagrams in
Figure 1, step (4). The first and the second diagrams denote
the Hartree-Fock and the Montroll-Ward terms, while the
third and the fourth correspond to direct and exchange
contributions of T matrices, respectively.

Let us briefly mention our development from the pre-
vious formulation [27]. We substitute the second-order
scattering (screened Born) term in the direct T-matrix
contribution with the Montroll-Ward term to avoid double
counting of Feynman diagrams. We no longer need the
additional screened Hartree-Fock (screened-exchange
and Coulomb-hole) term since it is already considered
via the Hartree-Fock and the Montroll-Ward terms. Our
self-energies include the exchange contribution of T
matrices.

As a realistic quasi-1D e-h system, we consider in the
following a strongly photoexcited semiconductor quantum
wire. There, we assume that electrons and holes can reach a
quasithermal equilibrium before their recombination since
the intraband relaxation time is far shorter than the inter-
band one. In our model of wire, all electrons and holes are
confined in the ground subband formed by the hard-wall
potential with a rectangular cross section. The side lengths
of the rectangle are set to 18.9 and 8.09 nm so as to
reproduce the aspect ratio of the cross section and the

quasi-1D exciton binding energy, E1D ¼ 14 meV, ob-
served in the T-shape quantum wire [9,10]. We use the
background dielectric constant, �0 ¼ 13:74, and the effec-
tive mass of electron and hole in the axial direction, me ¼
0:0665m0 and mh ¼ 0:11m0, with the electron rest mass
m0. The final results are insensitive to the geometrical form
of the wire, if the energy and the length are scaled by the
quasi-1D exciton binding energy E1D and Bohr radius,
a1D ¼ @=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE1D

p
, respectively, where m ¼ memh=ðme þ

mhÞ denotes the reduced mass.
Figure 2(a) shows the phase diagram on the n-T plane

as contour plots of the ionization ratio, � ¼
ð2�nÞ�1

P
a

R
fa;kdk, which is the ratio of the

quasielectron-hole density to the total electron-hole den-
sity n. The horizontal axis na1D denotes the inverse of the
rs parameter in quasi-1D. The Mott density (dash-dotted
line) indicates the vanishing of the exciton ionization
energy, E�

g � ðEg � E1DÞ ¼ 0, where Eg and E�
g ¼

�e;k¼0 þ �h;k¼0 denote the bare and renormalized band

gaps, respectively. Note that the exciton energy is almost
n independent and is given as Eg � E1D due to its charge

neutrality.
The electrons and holes are almost fully ionized in two

extreme regions, the low-n–high-T (left-upper) and the
high-n–low-T (right-lower) regions. In the former region,
the electrons and holes behave as classical plasma, whereas
in the latter region on the right-hand side of the Mott
density line, they are regarded as quantum plasma. The
almost genuine exciton gas with extremely small ioniza-
tion ratio is realized only at low n (na1D & 0:5� 10�1)
and low T (kBT=E1D & 10�1). At even lower T, we also
find a shaded region where the homogeneous thermody-
namic state can no longer exist. The boundary of this
region is characterized by the divergence of isothermal
compressibility, n�2ð@n=@�ÞT , which indicates the insta-
bility toward an inhomogeneity.
In the low-n and high-T region, n�T < 0:2, � is well

evaluated by the Saha equation for the mixture of ideal gas
of electrons, holes, and excitons of the lowest energy,

�2ð1� �Þ�1 ¼ ðn�TÞ�1e�E1D=kBT , where we define the
thermal de Broglie wavelength as �T ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�mkBT

p
. In

this region, � is a monotonically decreasing function of n
and an increasing function of T. As n increases, the contour
lines start to deviate from a gradually increasing line of the
Saha equation, bend around the dotted line, n�T � 0:2, and
then follow the steep Mott density line. In the right-hand
region of this dotted line, � increases drastically by n,
which mainly stems from the Pauli-blocking effect. Just
above the unstable region, � increases suddenly and ap-
proaches a pure Mott transition: some of the contours flow
into the same point with lowering T. This singularity
reflects the discontinuous change of the screening parame-
ter as will be mentioned shortly. At around theMott density
line, � reaches unity and electrons and holes turn to fully
ionized quantum plasma.

FIG. 1. Calculation scheme depicted by Feynman diagrams.
Thick and thin solid lines denote full and bare single particle
Green’s functions, respectively, while thick and thin wavy lines
represent screened and bare Coulomb interactions, respectively.
Inset: Interband optical susceptibility.
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Figure 2(b) shows the contour plot of the e-h chemical
potential � on the n-T plane. At the higher-T region
(kBT=E1D * 0:3), � gradually and monotonically in-
creases as a function of n, while at lower T several anoma-
lies are found. One significant feature is the bundling of
contour lines near the pure Mott transition point mentioned
above. This indicates that � also shows a significant in-
crease with n around this point. Once off this point, the
contour lines become quite sparse, namely, � remains
almost independent of n, which is regarded as a precursor
of the unstable (inhomogeneous) phase. Consequently, �
behaves almost like a step function as shown in the inset,
from the semigenuine exciton gas value to the quantum e-h
plasma one [28].
The dash-dotted line describes the condition, � ¼ E�

g,

which is the onset of the optical gain induced by the e-h
plasma (plasma gain) [29]. In contrast to the complicated
behavior of the �� Eg contour lines, this � ¼ E�

g shows

no singularity even near the unstable region, which implies
that the interaction effects on� and E�

g are canceled out. In

fact, the � ¼ E�
g line in our theory is quite close to the

corresponding line drawn by the free-carrier theory

(broken line), which is well approximated by n�T ¼
2ðmemh=m

2Þ1=4I�1=2ð0Þ ¼ 1:21� ðmemh=m
2Þ1=4 with

I�1=2ðxÞ being the complete Fermi-Dirac integral of order

�1=2. The present results thus guarantee that the onset of
plasma gain can be safely evaluated semiqualitatively by
the free-carrier theory.
Figure 2(c) is devoted to the contour of the screening

parameter � on the n-T plane. Let us first explain briefly
the reference result which does not include the excitonic
effect; in the quantum e-h plasma regime, the screening
parameter is expected to increase with decreasing n due to
the divergence of DOS at the band edge. However, if n is
decreased further, the e-h system turns to the classical e-h
plasma, and thus the screening parameter will be sup-
pressed gradually as n decreases. This classical-quantum
crossover is well described by �DH ¼ �TF, or equivalently,

n�T ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M=�m

p
with M ¼ me þmh, where �DH ¼

2n=kBT and �TF ¼ 4M=�2
@
2n denote the screening pa-

rameters evaluated by the Debye-Hückel and Thomas-
Fermi approximations, respectively. These two limits are
interpolated by the conventional method in Ref. [13],
which we call PPAþ SHFA [broken lines in Fig. 2(c)].
They evaluate the screening parameter by the PPA for the
fully ionized e-h plasma in which the quasielectron or
quasihole energies are estimated by the screened Hartree-
Fock approximation (SHFA).
Now, let us compare our results with those of PPAþ

SHFA. In the high ionization regime, � * 0:6, the screen-
ing parameter almost follows the PPAþ SHFA results,
which, however, breaks down once we enter the low ion-
ization region, � & 0:6, and the contour line bends and
flows into the pure Mott transition point. The low-T–low-n
region on the left-hand side of this point is a semigenuine
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FIG. 2 (color online). Phase diagrams of a quasi-1D e-h system
depicted by three contour plots on the n-T plane. Electron-hole
density n and temperature T are scaled by inverse of quasi-1D
excitonBohr radius,a�1

1D ¼ 1:24� 106 cm�1, and binding energy,

E1D ¼ 162 K, respectively. Isothermal compressibility diverges
on the boundary of the shaded region, in which uniform thermody-
namic states are destabilized. (a) Ionization ratio � (solid lines),
togetherwithMott density (dash-dotted line). Broken lines for� ¼
0:1, 0.5, and 0.9 are calculated by the classical Saha equation. The
dotted line shows the conditionn�T ¼ 0:2, with thermal deBroglie
length, �T defined with the reduced mass. (b) e-h chemical poten-
tial, � ¼ �e þ�h, measured from Eg (solid lines). Dash-dotted

and broken lines show the onset of plasma gain derived by the
present and the free-carrier theories, respectively. Inset: n depen-
dence of � at kBT ¼ 0:13E1D. (c) Screening parameter � (solid
lines) in comparison with the one calculated following Ref. [13]
(broken lines). Dash-dotted line shows the condition that the
Debye-Hückel and Thomas-Fermi screening parameters, �FH and
�TF, are equal. Dotted line denotes contour line for � ¼ 0:6.
Contour values are scaled by e2=�0 with the elementary charge e.
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exciton gas, which has only a small number of charged
quasielectrons or quasiholes so that the screening effect is
suppressed significantly. Therefore, on entering this re-
gion, the screening parameter shows an almost discontinu-
ous or drastic change, which cannot be expressed in the
conventional theory which does not take into account the
excitonic effect in the screening parameter.

We finally evaluate the interband optical absorption-gain
spectra per axial length as the imaginary part of the sus-
ceptibility derived from the e-h T matrix as shown in the
inset of Fig. 1. We set T ¼ 0:3E1D ¼ 49:2 K close to the
experimental value in Ref. [10]. The exciton peak is gradu-
ally suppressed with increasing n and disappears near the
Mott density, reflecting the Mott crossover. Then, one finds
three distinct features. First, the plasma gain becomes
relevant above the onset density [29]. Second, both the
exciton peak position and the continuum onset (i.e., the
renormalized band gap) remain almost unshifted at low n.
Finally, one finds an intrinsic broadening caused by the
intercarrier scatterings, which results in a characteristic
low-energy tail. These three features are actually observed
in experiments [4–10], while not fully explained by the
previous theories.

The reference result calculated by the semiconductor
Bloch equation (SBE) [13,17] is presented in Fig. 3(b).
While the SBE reproduces the plasma gain, their exciton
peak distinctly shows a redshift by n, and the intrinsic
broadening is not considered: a phenomenological broad-
ening, � ¼ E1D=14 ¼ 1 meV, is introduced by hand.
There is another theory including the dynamical screening
effect, which settles the above two problems of SBE [16].
Then, however, the optical gain is washed out and the Mott
crossover never occurs. By contrast, we succeeded in
reproducing semiqualitatively all these features in recent
measurements [9,10] by including the ionization-ratio con-
cept, without introducing any phenomenological fitting
parameters.

To summarize, we visualized the Mott physics realized
in the quasi-one-dimensional strongly photoexcited semi-

conductors on the global phase diagram using the self-
consistent screened T-matrix approximation by properly
taking into account the suppression of the screening effect
by the exciton formation. We also succeeded in reproduc-
ing the interband optical absorption-gain spectra observed
in recent experiments. Although a Mott crossover exists
and the plasma gain does arise, the huge optical gain at the
band edge expected from the free-carrier theory is sup-
pressed by the spectral broadening caused by the intercar-
rier scattering. In addition to the Mott crossover at high
temperature, our phase diagram predicts the unstable (in-
homogeneous) region as well as pure Mott transition,
which are still not detected experimentally due to the finite
e-h lifetime. However, the two-peak structure found in
photoluminescence measurements [9] might be a precursor
of inhomogeneity found in the lowest temperature region
of our phase diagram. It is a future problem to clarify
whether the unstable region indicates a coexisting region
or a novel inhomogeneous phase, e.g., the biexcitonic
crystallization proposed by one of the authors within the
bosonization scheme [30]. To answer this problem, we
should include interexcitonic correlations neglected in
the present framework. Although a quantum condensation
of an e-h pair might take place at low temperature, no
instability was found in the parameter region of our phase
diagram. This is presumably because our self-energies
include the e-h T-matrix contribution, properly accounting
for the enhancement of the e-h pair fluctuation in low
dimension.
This work is supported by KAKENHI (No. 20104010

and No. 21740231).

[1] N. F. Mott, Philos. Mag. 6, 287 (1961).
[2] See, for example, Metal-to-Nonmetal Transtions, edited

by R. Redmer, B. Holst, and F. Hensel (Springer, Berlin,
2010).

[3] See, for example, A. George et al., Rev. Mod. Phys. 68, 13
(1996).

[4] E. Kapon, D.M. Hwang, and R. Bhat, Phys. Rev. Lett. 63,
430 (1989).

[5] W. Wegscheider et al., Phys. Rev. Lett. 71, 4071 (1993).
[6] R. Ambigapathy et al., Phys. Rev. Lett. 78, 3579 (1997).
[7] Y. Hayamizu et al., Appl. Phys. Lett. 81, 4937 (2002).
[8] T. Guillet et al., Phys. Rev. B 67, 235324 (2003).
[9] Y. Hayamizu et al., Phys. Rev. Lett. 99, 167403 (2007).
[10] M. Yoshita et al. (unpublished).
[11] Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939

(1982).
[12] M. Asada, Y. Miyamoto, and Y. Suematsu, Jpn. J. Appl.

Phys. 24, L95 (1985).
[13] S. Benner and H. Haug, Europhys. Lett. 16, 579

(1991).
[14] F. Tassone and C. Piermarocchi, Phys. Rev. Lett. 82, 843

(1999); C. Piermarocchi and F. Tassone, Phys. Rev. B 63,
245308 (2001).

-2 -1 0

0

10

20

30

Im
d2

(a
1D

-1
E

1D
-1

)

Eg (E1D)

(a) Present Study

-2 -1 0

(b) SBE
=E1D/14

FIG. 3 (color online). (a) Interband optical absorption-gain
spectra per axial length calculated at kBT ¼ 0:3E1D ¼ 49:2 K
for several e-h densities. (b) Those calculated by semiconductor
Bloch equation. Photon energy and dipole matrix element are
denoted by @! and d, respectively.

PRL 107, 256403 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

16 DECEMBER 2011

256403-4

http://dx.doi.org/10.1080/14786436108243318
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/PhysRevLett.63.430
http://dx.doi.org/10.1103/PhysRevLett.63.430
http://dx.doi.org/10.1103/PhysRevLett.71.4071
http://dx.doi.org/10.1103/PhysRevLett.78.3579
http://dx.doi.org/10.1063/1.1532111
http://dx.doi.org/10.1103/PhysRevB.67.235324
http://dx.doi.org/10.1103/PhysRevLett.99.167403
http://dx.doi.org/10.1063/1.92959
http://dx.doi.org/10.1063/1.92959
http://dx.doi.org/10.1143/JJAP.24.L95
http://dx.doi.org/10.1143/JJAP.24.L95
http://dx.doi.org/10.1209/0295-5075/16/6/012
http://dx.doi.org/10.1209/0295-5075/16/6/012
http://dx.doi.org/10.1103/PhysRevLett.82.843
http://dx.doi.org/10.1103/PhysRevLett.82.843
http://dx.doi.org/10.1103/PhysRevB.63.245308
http://dx.doi.org/10.1103/PhysRevB.63.245308


[15] S. Das Sarma and D.W. Wang, Phys. Rev. Lett. 84, 2010
(2000).

[16] D.W. Wang and S. Das Sarma, Phys. Rev. B 64, 195313
(2001).

[17] P. Huai et al., Jpn. J. Appl. Phys. 46, L1071 (2007).
[18] R. Loudon, Am. J. Phys. 27, 649 (1959).
[19] T. Ogawa and T. Takagahara, Phys. Rev. B 43, 14 325

(1991).
[20] R. Zimmermann et al., Phys. Status Solidi B 90, 175 (1978).
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