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The quantum zero-point motion of the carbon atoms is shown to induce strong effects on the optical and

electronic properties of diamond and trans-polyacetylene, a conjugated polymer. By using an ab initio

approach, we interpret the subgap states experimentally observed in diamond in terms of entangled

electron-phonon states. These states also appear in trans-polyacetylene causing the formation of strong

structures in the band structure that even call into question the accuracy of the band theory. This imposes a

critical revision of the results obtained for carbon-based nanostructures by assuming the atoms frozen in

their equilibrium positions.
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Carbon-based nanostructures represent the natural can-
didates to replace silicon-based materials in the devise of
efficient opto-electronic devices. Conjugated polymers, in
particular, have been shown to have peculiar properties
related to the very fast relaxation of charge carriers due
to the electron-phonon coupling [1]. Nevertheless, despite
the rapid development of technological applications, the
role of atomic vibrations in carbon-based nanostructures
has been only treated in a semiempirical manner, boosted
by the essential question of the mobility of charged carriers
in organic devices [2]. However, these approaches are
based on Hamiltonians that rely on parameters which are
difficult to extract from experiments and clear-cut conclu-
sions are still elusive. In contrast, the most accurate,
parameter-free and up-to-date description of the electronic
properties of bulk and nanosized materials, is based on
ab initio methods. These techniques benefit of the predic-
tivity and accuracy of density functional theory (DFT) [3]
merged with many-body perturbation theory (MBPT) [4].
The goal of the ab initiomethods is to describe and predict
in a quantitative manner, the optical and electronic prop-
erties of any electronic system, starting from its atomic
configuration. The result is a wealth of techniques like the
GW method [3] that has been successfully applied to a
large number of different systems, among which carbon-
based nanostructures.

In the GW approach, as well as in other applications of
the ab initio methods, a standard approximation is to as-
sume the atoms frozen in their equilibrium positions. Many
years ago [5], however, the pioneering works of Heine,
Allen, and Cardona (HAC) pointed to the fact that, even
when the temperature vanishes, the quantum zero-point
motion of the atoms (the zero-point motion effect) can
induce large corrections to the electronic levels, making

purely electronic theories (like the GW method) inade-
quate. Nevertheless, the enormous numerical difficulties
connected with the calculation of the electron-phonon in-
teraction has defacto prevented the systematic application
of the HAC theory. Nowadays, the advent of more refined
numerical techniques, has made possible to ground the
HAC approach in a fully ab initio framework [6]. More
recently, on this journal, Giustino et al. [7,8] found a large
zero-point renormalization (615 meV) of the band-gap of
bulk diamond. The HAC approach is, however, based on a
static theory of the electron-phonon coupling that, as
pointed out by Giustino et al. [7], is not fully justified.
The static HAC approach leads, indeed, to an agreement
between theory and experiment that can be somewhat for-
tuitous as dynamical effects are completely neglected.
In this work we show, indeed, that when the temperature

vanishes, the quantum zero-point motion of the atoms
induces strong dynamical effects on the optical and elec-
tronic properties of diamond and trans-polyacetylene, a
paradigmatic conjugated polymer. The subgap peaks ap-
pearing in the experimental absorption spectrum of dia-
mond are interpreted in terms of polaronic states,
composed of entangled electron-phonon pairs, that cannot
be described by the HAC theory. When the reduced di-
mensionality of the system enhances the amplitude of the
atomic vibrations, the zero-point motion effect even frag-
ments the electrons in a continuum of polaronic states. This
is the case of trans-polyacetylene, where the single-
particle band-structure is replaced by a jellylike electronic
distribution and the wave functions of electrons and atoms
are stretched along the polymer axis. This is the breakdown
of the band theory. By disclosing the physical motivations
of the zero-point motion effect, we discuss how the present
results lead to potentially ground-breaking consequences
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on our understanding of the optical and electronic proper-
ties of carbon-based nanostructures.

The zero-point motion effect can be understood by using
simple arguments. At finite temperature the atoms oscillate
around their equilibrium positions. These oscillations can
be mapped in a system of noninteracting harmonic oscil-
lators. As a consequence of the quantum nature of the
atoms, when the temperature goes to zero the atoms col-
lapse in a ground state with a finite energy. This is the zero-
point energy that induces quantum fluctuations of the
atoms. The effect of this purely quantum motion on the
electronic levels can be described using MBPT applied to
the electron-phonon problem [4]. It can be shown that, at
zero temperature, the electron-phonon self-energy, taken to
the lowest non vanishing order of perturbation theory, is
composed of two contributions. The first term is the Fan
self-energy

�Fan
I ð!Þ ¼ X

J�

X
�¼�

NJ
�jhIjHel�phjJi � j�ij2

Nqð!� "J þ �!� � i0þÞ ; (1)

with jJi and j�i the generic electronic and phononic state.
NJþ ¼ fJ and NJ� ¼ 1� fJ, with fJ the electronic occu-
pations. Nq is the total number of transferred momenta

used to integrate the self-energy. The key quantities in
Eq. (1) are the electron-phonon matrix elements g�IJ �
hIjHel�phjJi � j�i, with Hel�ph the electron-phonon

Hamiltonian [4] which, written in the second quantization,

reads Hel�ph ¼ P
IJg

�
IJc

y
J cIðby� þ b�Þ. The g�IJ are calcu-

lated ab initio using density functional perturbation theory
(DFPT) [9]. A frequency independent Debye-Waller term,
�DW

I is added to �Fan
I in order to preserve the translational

invariance of the theory. More details about the Debye-
Waller term can be found, for example, in Ref. [8]. The
DFPT scheme allows us to introduce, fully ab initio, the
nonlocality (in momentum space) of the coupling constants
g�IJ, whose importance in the case of conjugated polymers
has been highlighted by using model Hamiltonians [10].

The full frequency-dependent Green’s function GIð!Þ is
readily defined to be GIð!Þ ¼ ð!� "I � �Fan

I ð!Þ �
�DW

I Þ�1. The true single-particle excitations of the system
are obtained as poles of GI. The HAC theory and the more
general quasiparticle approximation (QPA) can be ob-
tained making approximations on the frequency depen-
dence of �Fan

I ð!Þ. However, we would like to follow a
different path.

Physically Eq. (1) describes the scattering of the bare
electronic state jIi with the continuum of phonons that
surrounds the state jJi. These scatterings are weighted by
the coupling terms g�IJ. This scenario can be described
using the well-known Fano theory [11] which describes,
in general, the coupling of a discrete state (jIi) with a set
of final states surrounded by a continuum of excitations
(jJi � j�i). The scattering with many possible final states
induces interference effects. When these effects are small

the term with J ¼ I dominates the sum in Eq. (1), and the
Fano theory predicts the spectral function (SF) AIð!Þ �
1
� j=½GIð!Þ�j to be a Lorentzian. This is the QPA, and the

center of the Lorentzian is the quasiparticle (QP) energy,

defined to be "I þ ZI�
Fan
I ð"IÞ þ �DW

I , with ZI ¼
ð1� @<�Fan

I ð!Þ
@! j!¼"I Þ�1 the renormalization factor [4]. If

in addition j g�IJ j2� !D, with !D the Debye frequency,
the Lorentzian width goes to zero, Z ¼ 1 and we have the
HAC approach. This corresponds to a frequency indepen-
dent �Fan. When the coupling factors g�IJ are large the
interference effects force the system to create coherent
packets of electron-phonon pairs,

jPi ¼ �P
I jIi þ

X
J�

�P
J�jJi � j�i: (2)

We define jPi a polaronic state with energy EP. Indeed, it
can be demonstrated [12] that, by choosing the coefficients
�P

I and �P
J� as eigenvectors of an effective Hamiltonian,

the Green’s function corresponding to Eq. (1), can be
rewritten as GIð!Þ ¼ P

Pj�P
I j2ð!� EP þ i0þÞ�1. It also

follows that hPjPi ¼ 1. Physically, Eq. (2) describes a
system where the electrons are replaced by a continuum
of polarons whose purely electronic part is weighted by
j�P

I j2. The QPA is recovered when the j�P
I j2 factors have a

Lorentzian distribution around the QP energy. However, in
general, if the j�P

I j2 are small the second term in the right-
hand side of Eq. (2) is large making the AIð!Þ to deviate
from the simple Lorentzian lineshape. In this case the
electron is fragmented in several polaronic states and the
QPA is expected to fail. The entangled nature of the polar-
onic state j Pi is known [13] to be related to its spatial
localization. In Eq. (2) the change in the polaronic spatial
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FIG. 1 (color online). The experimental [19] d2"2ð!Þ=d!2 of
bulk diamond near the absorption edge (red spheres) is compared
with the QPA (dashed line) and with the full-dynamical theory
(full line). The optical gap is defined by transitions between the
�0
25v (occupied) and �15c (empty) states. The �0

25v state is a

genuine QP state. The �15c SF, instead (shown in the inset), is
characterized by strong side peaks that well reproduce the
subgap peaks appearing in the experimental spectrum below
7.1 eV. EGW

g represents the QP direct gap obtained by neglecting

the zero-point motion effect.
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localization is caused by the �P
J� factors that drive the

modifications of the polaronic Green’s function and of the
polaronic wave function, as discussed below.

In the inset of Fig. 1 the SF AIð!Þ of bulk Diamond,
obtained by using the dynamical dependence of the self-
energy, is compared with the QPA for the �15c state, the
bottom of the conduction bands [14]. The SF, instead of
being a simple Lorentzian, shows peaks at 7.25 and 7.9 eV.
These peaks are due to polaronic states jPi each carrying a
fraction (given by j�P

I j2) of the total electronic charge.
They allow us to explain the subgap states observed ex-
perimentally. Indeed the �15c state contributes to the onset
of the absorption via transitions with the top of the valence
bands, represented by the �0

25v state. The corresponding

contribution to the absorption edge will be given by the
convolution of the �0

25v and �15c SFs [15]. This convolution

is used, in Fig. 1, to calculate the second derivative of the
dielectric function and to compare it with the experimental
spectrum [19]. The experimental absorption clearly shows
the absorption gap at 7.19 eV together with some subgap
structures at 6.71 and 6.94 eV. Such structures are com-
pletely absent in the QPA or using the HAC approach. The
dynamical theory, instead, leads to an excellent agreement
with the experimental result.

This result, while supporting the correctness of a dy-
namical theory of the zero-point motion effect, questions
the validity of the QPA and of the static HAC approach.
The strength of the dynamical zero-point motion effect in
diamond is unexpected, and opens the path to potentially
stronger effects in carbon-based nanostructures. Indeed,
the strength of the electron-phonon self-energy is linked
to the amplitude of the atomic vibrations that in a nano-
structure is enhanced. This can be easily verified by con-
sidering a conjugated polymer, as trans-polyacetylene.
This is a 1D chain made up of repeated structural units
linked by alternated single and double bonds between the
carbon atoms [20]. The unit cell contains 2 carbon and 2
hydrogen atoms, which lay on the same plane, as shown in
the upper frames of Fig. 2. We can associate an average
quantum size to the atoms by using the standard deviation
~�i of the atom i with mass Mi, in its ground-state wave

function [5]. This is ~�i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

�ðMi!�Þ�1j ~�ið�Þj2
q

, with

~�ið�Þ the polarization vector of the phonon mode �. In
diamond �C � 0:1 a:u:, independently on the direction. In
trans-polyacetylene the smaller distance between carbon
atoms, slightly reduces the standard deviation along the x̂
direction where �C � 0:08 a:u: while in the ŷ direction
�C � 0:16 a:u:. Hydrogen is much lighter than carbon
and, as ~�i � ð ffiffiffiffiffiffi

Mi

p Þ�1, its standard deviation in the poly-
mer plane is such that �H � 0:2 a:u:.

To clearly visualize the dramatic effect of the zero-point
motion effect on the electronic structure of trans-polyace-
tylene we define a global SF Aðk;!Þ � P

n
1
� j=½Gnkð!Þ�j,

where we have explicitly expressed the index I in terms of
the band (n) and k-point (k) indexes. k is taken in the �� X

direction [14]. Physically�Z � Aðk;!Þ�! gives the frac-
tion of electronic charge carried by the state with k-point k
in the small energy range �!. From the definition of
Aðk;!Þ it follows that �Z / j�P

I j2. The A function is a
very peaked function of k and! both in the HAC approach
and in the QPA with the charge confined in very sharp
single-particle states. The plot of the A function, shown in
Fig. 2 in the energy range of the last three occupied bands,
gives instead a completely different picture. The lower
panel color scale of Fig. 2 refers to the dimensionless
quantity �Z calculated with �! ¼ 50 meV. As a refer-
ence we show the range of values of �Z corresponding to
the QPA. Note that the static HAC theory corresponds to
�Z ¼ 1.
With the exception of the 5th band, the charge carried by

the SF is lower then 0.4, well below the range of values

FIG. 2 (color online). Two-dimensional plot of the SF Aðk;!Þ
in the energy region of the last three occupied bands. CBM
represents the conduction band maximum and the bands have
been explicitly numbered indicating the corresponding hybrid-
ization (� or �). The range of values of A (lower panel) are given
in terms of the dimensionless quantity �Z (see text) that mea-
sures the elemental charge carried by the SF. Except the � states,
perpendicular to the polymer plane, the electronic levels acquire
a large energy indetermination that is particularly dramatic in the
region enclosed by the two dashed line. This destructive effect is,
instead, a cooperative interaction between atoms and electrons
that is reflected in the stretching of the polaronic states in the
direction of the polymer axis. This is evident from the compari-
son of the wave functions of a reference bare state (left frame,
point a) with two polaronic states (central and right frame, points
b and c). The standard deviation of the atoms in their unper-
turbed state and in the polaronic states is represented by the size
of the spheres in the three upper frames.
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where the QPA or the HAC theory is accurate. More
importantly, very small values of �Z mean small j�P

I j2
and, consequently, large contributions of the electron-
phonon pairs in the polaronic state [second term in the
right-hand side of Eq. (2)]. This effect is even more
dramatic in the central energy region, where the bands
disappear being replaced by an almost uniform, jellylike
charge distribution that, in Fig. 2, is represented by the
region enclosed by the two dashed lines. Physically the
system is forced to split the electronic levels in several
polaronic states. Single-particle states are not allowed any-
more. This is an unambiguous signature of the breakdown
of the band theory.

With respect to the 3rd and the 4th, the 5th band, near the
X point, has a � character, corresponding to states distrib-
uted perpendicular to the polymer axis. As a consequence
they feel less the effect of the on-plane vibrations and
almost all electronic charge is confined in sharp quasi-
particle-like peaks.

A more careful analysis reveals that the destructive
effect of the zero-point motion effect on the electronic
band-structure is, instead, a signature of a cooperative
electron-atom dynamics. Indeed, Eq. (2) allows us to cal-
culate, ab initio, several properties of the polaronic states.
By projecting jPi on the real-space we can define the
polaronic wave function, hrjPi, and also calculate the
standard deviation ~�P

i of the atom i that participates in

the polaronic state. This can be used to explain the physical
properties of the wide region enclosed by the two dashed
lines in Fig. 2. In the upper frame (a) of Fig. 2 we consider a
bare electronic state that is localized on the C-H bond. The
zero-point motion effect splits the charge of this state in
several polaronic states. Two of the most intense are the
states (b) and (c) whose wave-functions are shown in
the upper frames of Fig. 2. By moving towards the center
of the region the electronic charge is gradually moved from
the C-H bond towards the polymer axis. In the state (c) this
charge transfer is more pronounced and the wave function
is completely delocalized along the polymer axis. Even
more stunning is the effect of the zero-point motion on the
atomic standard deviation. In both states (b) and (c) ~�P

i is

decreased by 50% in the ŷ direction and increased by 150%
in the direction of the axis. The present results show that
the zero-point motion effect works to enhance the deloc-
alization of the charge carriers by stretching both electrons
and atoms along the polymer axis. This cooperative effect
agrees with the general interpretation of the high electronic
mobility in polymers as dictated by the efficient hopping of
the charge carriers [21,22].

In conclusion, we have shown that, when the tempera-
ture vanishes, the quantum zero-point motion of the atoms
induces large corrections to the optical and electronic
properties of diamond and trans-polyacetylene. The elec-
tronic bands are replaced by a continuum of polaronic
states composed by entangled electron-phonon pairs.

This successfully explains the subgap states observed ex-
perimentally in the absorption spectrum of diamond, and
the rich structures that appear in the spectral functions of
trans-polyacetylene. The cooperative dynamics between
electrons and atoms that leads to the formation of the
polaronic states rules out any description in terms of bare
atoms, bare electronic states or quasiparticles. This inevi-
tably leads to the failure of the band-theory. The present
results highlight the limitations of an approach to carbon-
based nanostructures and organic materials that neglects
the effect of the electron-phonon coupling. The deep
change of the electronic and atomic wave functions in-
duced by the formation of the polaronic states can have
important implications on related properties. This inevita-
bly, imposes a critical revision of the results obtained using
purely electronic theories with atoms frozen in their equi-
librium positions.
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