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We show that puzzling recent experimental results on spin diffusion in a strongly interacting atomic gas

may be understood in terms of the predicted spin diffusion coefficient for a generic strongly interacting

system. Three important features play a central role: (a) Fick’s law for diffusion must be modified to allow

for the trapping potential; (b) the diffusion coefficient is inhomogeneous, due to the density variations in

the cloud; and (c) the diffusion approximation fails in the outer parts of the cloud, where the mean free

path is long.
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Diffusion in the presence of an external potential is an
important problem in diverse fields, ranging from astro-
physics, to condensed matter physics, to biology. New
vistas for understanding diffusion of spin have been opened
up by experiments using resonantly interacting atomic
gases [1,2]. These experiments are the analog for spin
phenomena of earlier groundbreaking experiments that
established that atomic gases may form a perfect fluid
with a shear viscosity having the least possible value con-
sistent with quantum mechanics [3,4].

In the spin transport experiments, a cloud of atoms
consisting of two hyperfine states of the same atom, which
we refer to as " and # , was studied. Atoms in one state were
displaced with respect to those in the other state and the
subsequent dynamics was investigated [1,2]. When the
population of one hyperfine species is much larger than
the other, the diffusive motion is well described by colli-
sional relaxation [2,5]. For equal populations of the " and #
atoms, previous studies have focussed on the initial bounc-
ing motion of the clouds [6,7]. Here, we analyze the long
time scale dynamics and show that, because of the trap
potential VðrÞ, Fick’s law must be modified. We demon-
strate that this effect, combined with the fact that the spin
diffusion coefficient is inhomogeneous, leads to predic-
tions for the decay rate that are more than 1 order of
magnitude larger than the experimentally measured one
in the classical regime. The resolution of this puzzle is
shown to be the failure of the diffusion approximation in
the outer regions of the cloud. Our analysis accounts for the
experimental results in Ref. [1] using the spin diffusion
coefficient predicted for a resonantly interacting system.
There is a rich variety of regimes for spin relaxation,
depending on the trap anisotropy and the density of atoms.

Basic formalism.—In a trap, the magnetization density
MðrÞ ¼ n"ðrÞ � n#ðrÞ, where niðrÞ is the density of species
i, is not constant in equilibrium. For instance, MðrÞ /
e�VðrÞ=T for high temperatures T. (We use units in which
kB ¼ 1.) Rather the quantity that is constant is the

chemical potential difference �" ��# ’ 2M=�, where

� ¼ 2@M=@ð�" ��#Þ is the spin susceptibility. Thus dif-

fusion is driven by spatial variations of the chemical po-
tentials, and phenomenologically, the spin current density
jM is therefore given by the modified Fick’s law

jM ¼ �D�r
�
M

�

�
; (1)

where D is the spin diffusion coefficient. Equation (1)
reduces to the usual expression jM ¼ �DrM when V is
constant. We concentrate on the case of temperatures high
enough that the gas may be treated using the Maxwell-
Boltzmann distribution. In atomic gases, the dominant
relaxation process is two-body scattering and, conse-
quently, the diffusion coefficient, which is proportional to
the mean free path of a particle, therefore varies inversely

with the density n / e�V=T [1,8] and � ¼ n=T, where
n ¼ n" þ n#.
To determine the diffusive modes, we write Mðr; tÞ ¼

e��tMðrÞ. Insertion of Eq. (1) in the equation of continuity,
@tMþr � jM ¼ 0 gives

D0r2Pþ �e�V=TP ¼ 0; (2)

where D0 is the diffusion coefficient at the center of the
trap (V ¼ 0), and PðrÞ ¼ MðrÞ=nðrÞ is the local fractional
polarization. Equation (2) describes diffusion in the pres-
ence of an external potential and is often referred to as the
Smoluchowski equation [9]. In regions where V � T, P
satisfies the Laplace equation, and therefore the component
of P proportional to the spherical harmonic Ylm must vary
as r�l in three dimensions since the solution varying as rl is
forbidden by the condition that, by definition, jPj � 1.
Thus both P and rP vanish as r ! 1. Equation (2) is
therefore analogous to the Schrödinger equation for a

potential / e�V=T and determining the eigenvalue � is
equivalent to finding the strength of the potential that
will produce a zero-energy bound state. Equation (2)
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may be derived from the variational principle ��var ¼ 0,
where

�var ¼ D0

R
d3rðrPÞ2R

d3re�V=TP2
: (3)

For the lowest mode with a particular symmetry, �var

provides an upper bound on the lowest eigenvalue.
Simple examples.—We first solve (2) for a one-

dimensional (1D) harmonic potential, V ¼ m!2
zz

2=2,
where !z is the trap frequency. For jzj ! 1, P varies as
Aþ Bz, where A and B are constants, but because jPj< 1,
B ¼ 0. A numerical solution of (2) for the lowest mode that
is odd in z for the boundary condition PðzÞ ! const for
z ! 1 yields for the damping rate the result

�1D � 2:684
D0

l2z
; (4)

where l2i ¼ 2kBT=m!2
i . Plots of the polarization and the

associated spin current density are given in Fig. 1(a). Since
(2) is linear, the normalization of P and jM in Figs. 1 and 2
is arbitrary. The variational function tanhðz=0:7842lzÞ
gives for �var the value 2:687D0=l

2
z , which is within

�0:1% of the exact result.
We now consider the spherically symmetric case V ¼

m!2r2=2. The simplest solution rotationally invariant
about the z axis and odd in z has the form P ¼
Y10ð�ÞuðrÞ=r with Y10ð�Þ / cos�. In Fig. 1(b), we plot a
numerical solution to (2). Requiring the solution to vanish
as r ! 1 yields the damping rate

� ¼ 12:10
D0

l2
: (5)

Figure 2(a) shows contour plots of P and the spin current
density, which resembles that for a dipole. The variational
function z=½1þ ðr=dÞ3� has the correct asymptotic behav-
ior for both r ! 0 and r ! 1, and it yields �var ¼
12:12D0=l

2 for d ¼ 0:886l.
Anisotropic traps.—The spin diffusion experiments

[1] are performed in a prolate trap of the form VðrÞ ¼
mð!2

?�
2 þ!2

zz
2Þ=2 ¼ V? þ Vz, where � ¼ ðx; yÞ, with

FIG. 1 (color online). (a) The polarization (solid line) and the
spin current density (dashed line) for the 1D case. (b) PðrÞ for the
spherical case with PðrÞ ¼ PðrÞ cos�.

FIG. 2 (color online). Contour plots of the polarization and
spin current density (arrows) in the �z- plane. The red dashed
contour shows where the density has fallen to 0.1 of the central
value. (a) The spherical case. (b) The prolate case with � ¼
!z=!? ¼ 1=5. (c) The oblate case with � ¼ 5.
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!? >!z. We now solve the diffusion equation (2) for a
general aspect ratio � ¼ !z=!? using the variational
function

Pð�; zÞ ¼ z=ð1þ ~R3Þ; (6)

with ~R2 ¼ �2=d2? þ z2=d2z which obeys the correct bound-
ary conditions for r ! 0 and r ! 1. The variational pa-
rameters d? and dz determine the falloff of the polarization
in the transverse and axial directions in units of l? and lz,
respectively. The resulting damping rate is plotted versus �
in Fig. 3. We see that the variational function reproduces
very accurately the result for the spherical case � ¼ 1. The
damping is a decreasing function of �, since the transverse
confinement imposes a gradient in the polarization as is
illustrated in Fig. 2. The inset demonstrates that for prolate
traps, the length scale of the transverse variations d?
becomes longer than l? while the scale of axial variations
dz becomes shorter than lz; the opposite holds for oblate
traps. Figure 2(b) illustrates this important point further for
the case � ¼ 1=5: the polarization distribution is consid-
erably less prolate than the density distribution, and the
current density is significant even in regions where the
density is low. Note that, for the prolate and spherical
cases, the current has large transverse as well as axial
components.

For � ! 1, we see from Fig. 3 that the damping rate
approaches the 1D result (4). This reflects the fact that
the spin motion becomes 1D with the current essentially in
the axial direction from the maximum to the minimum of
the polarization, as is clearly seen in Fig. 2(c).

Born-Oppenheimer approximation.—Using the dimen-
sionless variables ~� ¼ �=l? and ~z ¼ z=lz, we see that the

diffusion equation (2) for an anisotropic, harmonic trap-
ping potential is equivalent to a threshold problem in
quantum mechanics with an isotropic 3D Gaussian poten-
tial, but where the mass for motion in the transverse
directions is a factor �2 ¼ !2

z=!
2
? smaller than that for

axial motion. For the case of a very prolate trap with ��1,
we can therefore solve the diffusion equation using
the Born-Oppenheimer approximation. Writing PðrÞ ¼
c ðzÞ�ð�; zÞ, we first find the lowest eigenstate for the
‘‘light’’ particle by solving

� ½@2~x þ @2~y � AðzÞe�~�2��ð�; zÞ ¼ EðzÞ�ð�; zÞ (7)

with AðzÞ ¼ A0 expð�~z2Þ and A0 ¼ �l2?=D0; �ðzÞ is de-

termined by solving the equation�
� !2

z

!2
?
@2~z þ EðzÞ

�
�ðzÞ ¼ 0: (8)

The damping � is determined from the value of A0 required
for Eq. (8) to have a zero-energy bound state that is odd
under reflection, �ð�zÞ ¼ ��ðzÞ. To solve (7), we ob-
serve that for !? � !z we expect � � D0l

�2
? , which

corresponds to A0 � 1. The transverse problem then re-
duces to finding the energy of the lowest bound state in a
shallow 2D Gaussian potential Vð~�Þ ¼ �AðzÞ expð�~�2Þ.
Such a state always exists and for V0 � 1 its energy is
E ¼ �� expð4	=V0Þ with V0 ¼

R
d2 ~�Vð�Þ [10,11]. The

prefactor is � ¼ 2 expð�2
þD1Þ to lowest order in AðzÞ
where 
 ’ 0:5772 is Euler’s constant and [12]

D1 ¼
Z

d2 ~�1d
2 ~�2

Vð~�1ÞVð~�2Þ
V2
0

lnð~�2
12=2Þ (9)

with ~�12 ¼ ~�1 � ~�2. The integrations are straightforward
to perform, and we find

EðzÞ ¼ �2e�3
e�4=AðzÞ: (10)

For A0 � 1, we can expand the eigenvalue as EðzÞ ’
�2 exp½�3
� 4ð1þ ~z2Þ=A0� and when this is inserted in
(8), we recover the 1D diffusion problem in a Gaussian
trap. Using our 1D result (4), the threshold condition for a
bound state odd in z in a very prolate trap becomes

�e�4D0=�l
2
? ¼ 2e3
�1D; (11)

which is an implicit equation for the damping rate. For
� � 1, the solution is

� ’ 4

lnðl2z=7:6l2?Þ
D0

l2?
: (12)

Thus, the assumption A0 � 1 for l? � lz is consistent.
However, the numerical factors indicate that the asymp-
totic expression (12) is a good approximation only for
extremely prolate traps. Figure 3 shows that the variational
function (6) accurately recovers the prolate limit of the
damping rate given by (11).

FIG. 3 (color online). The damping rate as a function of the
aspect ratio obtained with the variational function (6) (solid
line). The result (5) for a spherical trap is plotted as a cross,
and the limits � ! 1 (4) and � ! 0 (11) as dashed lines. The
variational length scales d? and dz are shown in the inset.
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Failure of the diffusion approximation.—For � � 0:1 the
calculations above predict a damping rate of approximately
200D0=l

2
z , while experimentally the results of Ref. [1] with

the expression for D0 from Ref. [8] give � � 10D0=l
2
z . We

now demonstrate that the discrepancy is due to the failure
of the diffusion approximation in the outer parts of the
cloud, where the density is low and conditions are colli-
sionless. An approximate expression for the distance r0
from the z axis at which the diffusion approximation fails
may be obtained by arguing that this occurs when a particle
has a probability of 1=e� of not suffering a collision
when it comes in from infinity. Assuming r0 � l?, this
gives [13]

r20 ’ l2? ln

�
n0 ��

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT

2m!2
?

s �
: (13)

Equation (13) is correct to logarithmic accuracy. The exact
value of the parameter ��Oð1Þ may be determined by
solving the kinetic equation in the vicinity of the boundary.
However, provided r0 � l? the uncertainty in � has little
effect on the value of r0.

At � ¼ r0 it is necessary to impose a boundary condi-
tion. The flux of atoms in the � direction for � > r0 is
small since, in the absence of collisions, atoms moving to
larger values of �will be reflected by the trapping potential
thereby strongly reducing the net flux. Consequently, we
impose the condition that the current in the � direction
vanish at � ¼ r0, or @P=@�j�¼r0 ¼ 0. When the distance

to the boundary r0 is not much larger than the typical
length scale l for the spin diffusion modes, it influences
the damping rate. In a prolate trap for which r0 * l?, the
polarization reaches its asymptotic value for z ! 1 for
jzj & lz and consequently the failure of the diffusion ap-
proximation for the motion in the axial direction, which
will occur only for large distances compared with lz, does
not affect the results. With the boundary condition
@P=@�j�¼r0 ¼ 0, the variational principle derived earlier

applies except that the region of integration is limited to
� � r0. For r0 not too much larger than l?, we argue that a
good approximation for a trial function is simply a function
of z, which gives a damping rate

� ’ r20
l2?

�1D: (14)

With increasing r0, there will be a crossover between
the 1D spin currents with a damping given by (14) and the
fully 3D hydrodynamic spin currents which have both
transverse and axial components as shown in Figs. 1(a)
and 1(b) with a damping scaling as ��D0=l

2
?. We expect

the crossover between the two hydrodynamic solutions to
occur when r20l

�2
? �1D �D0=l

2
? which gives r0 � lz.

Comparison with experiment.—We finally compare our
results with the experiments in Ref. [1]. For long times, the
spin dynamics is determined by the lowest diffusive mode

and the observed decay time is related to the damping rate
by the relation  ¼ 1=�. Using typical experimental num-
bers reported in Ref. [1], we obtain 3 & r20=l

2
? & 6. This

means that the spin dynamics is diffusive in a major part of
the cloud, and since lz=l? ’ 10> r0=l? we expect the
motion to be mainly along the z direction with a damping
rate given by (14). In Ref. [1], the decay time is written
in terms of a spin drag coefficient as  ¼ �sd=!

2
z and

we find

@�sd

EF

¼ 2
l2?
r20

D0

�1Dl
2
z

@

mD0

T

TF

’ l2?
r20

0:7

ffiffiffiffiffiffi
TF

T

s
(15)

where we have used (14) and D0 ’ 1:1ðT=TFÞ3=2@=m for a
strongly interacting Fermi gas in the classical regime [1,8].
This agrees with the measured high temperature experi-

mental result, �sd ¼ 0:16EF@
�1

ffiffiffiffiffiffiffiffiffiffiffiffi
TF=T

p
when r20?=l

2
? ’

4:4which is consistent with the estimate above. In addition
to reproducing the magnitude and temperature dependence
of the damping, our result also explains the observation
that �sd is independent of the axial trapping frequency !z.
In summary, we have shown that a quantitative account

of the measured damping rates of diffusive modes can be
given if three novel features of spin diffusion in a trap are
taken into account: the failure of Fick’s law, the inhomo-
geneity of the diffusion coefficient, and the failure of the
diffusion approximation in the outermost regions of the
cloud. The work may be extended in a number of direc-
tions: to gases with unequal numbers of the two species,
and to degenerate gases, including ones with a condensate
of paired fermions. Calculations of damping rates may also
be refined by improving variational functions and by ob-
taining a more quantitative understanding of the boundary
between diffusive and collisionless behavior on the basis of
the Boltzmann equation.
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