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The experimental observation of Peregrine solitons in a multicomponent plasma with the critical

concentration of negative ions is reported. A slowly amplitude modulated perturbation undergoes self-

modulation and gives rise to a high amplitude localized pulse. The measured amplitude of the Peregrine

soliton is 3 times the nearby carrier wave amplitude, which agrees with the theory. The numerical solution

of the nonlinear Schrödinger equation is compared with the experimental results.
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Korteweg–de Vries (KdV) solitons were theoretically
predicted for ion-acoustic waves by Washimi and Taniuti
[1]. The existence of ion-acoustic solitons was experimen-
tally confirmed by Ikezi et al. using a novel double-plasma
device [2]. For ion-acoustic waves, the coefficient of the
nonlinear term in the KdVequation is positive so that only
solitons with a positive potential are possible. However,
when a certain density of negative ions that is above a
critical value is introduced into the plasma previously
consisting of positive ions and electrons, the coefficient
becomes negative. Then, instead of positive potential sol-
itons, negative potential solitons can propagate. Negative
potential solitons (rarefaction of positive ions) have been
experimentally observed in a negative ion plasma which
contains F� ions [3].

A positive potential pulse steepens due to the fluid
velocity of positive ions. Electrons follow the steepening
since their mass is much lighter than ions. On the other
hand, negative ions pull back the steepening due to their
large inertia. At a certain density of negative ions, which is
called the critical density, the steepening does not occur,
which corresponds to the vanishing of the nonlinear term in
the KdV equation. In this case, the second order nonlinear
term that is proportional to the square of the wave potential
must be considered and the resulting equation is called the
modified KdV equation (mKdV). Since the coefficient of
the second order nonlinear term is positive, the mKdV
equation permits the existence of both positive and nega-
tive potential solitons. The coexistence of both the positive
and negative potential solitons was confirmed experimen-
tally when the negative ion density was equal to the critical
density [4].

Saito et al. have shown that the nonlinear Schrödinger
equation (NLSE) is equivalent to the mKdVequation [5]. It
is well known that the NLSE possesses envelope soliton
solutions. Envelope solitons of ion-acoustic waves were
observed experimentally when the negative ion density
was equal to the critical value in a double-plasma device
[6]. This experimental result confirms that the NLSE is

applicable in describing ion-acoustic waves in the negative
ion plasma when the density of negative ions is equal to the
critical density.
Peregrine analyzed the NLSE and predicted that there

are additional localized solutions to the NLSE [7]. It has
been suggested that rogue waves in the ocean are related to
what are now called Peregrine solitons. Peregrine solitons
have been observed in nonlinear fiber optics experiments
[8]. They have also recently been observed in deep water
wave experiments performed in a water tank [9].
In this Letter, we report the first observation of Peregrine

solitons of ion-acoustic waves in a multicomponent plasma
with negative ions when the density of negative ions is
equal to the critical value.
In a multicomponent plasma with the critical density of

negative ions, the NLSE describing the evolution of ion-
acoustic wave with weak nonlinearity is given by [5,6]
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Here, r and � represent the density ratio and the mass
ratio, respectively, of negative ions to that of the positive
ions. The angular frequency ! and the wave number k are
related with the following dispersion relation:
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The dispersion coefficient p in Eq. (1) is given by
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with the nonlinear coefficient q ¼ � d!
djc j2 .

As the dispersion coefficient p is always negative, a
finite amplitude sinusoidal wave is modulationally un-
stable for q < 0 [10]. The NLSE (1) has a rational solution
of the form [7,11]
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The development of the initial amplitude modulated
wave packet is then given by

�ðx; tÞ ¼ Refc ðx; tÞ exp½iðkx�!tÞ�g; (3)

where c ðx; tÞ is the dimensional form of Eq. (2) which can
be obtained by using the transformation � ! a0kDðx�
VgtÞ and � ! a20!pit, where a0 represents the initial

wave amplitude of the background carrier wave.
The evolution of the wave with increasing value of a0 is

shown in Fig. 1 by numerically solving Eq. (3). Here we
consider ! ¼ 0:7!pi, k ¼ 0:74kD, which are the experi-

mentally measured values for the ion-acoustic wave in the
multicomponent plasma. The space coordinate is fixed at
x ¼ 13:2 cm. The values for the dispersion coefficient (p)
and the nonlinear coefficient (q=4) are taken to be�0:5 and
�0:4, respectively, for the present plasma condition [6].
For smaller value of a0 the perturbation evolves as a wave
envelopewhich undergoes amplitude and phasemodulation
leading to the formation of the solitarywavewith increasing
carrier wave amplitude. The wave amplitude is nearly 2.5
times the carrier amplitude for a0 ¼ 0:035. The special

feature of Eq. (3) is that the solution is localized both in
space and time as already shown [8,9].
The experiment has been carried out in a multidipole

double-plasma machine [12]. The diameter of the device is
30 cm and its total length is 120 cm. The device is sepa-
rated into a source and a target section with a floating grid.
The grid consists of a stainless steel mesh 50 lines/inch
with 83% transparency. The cathodes consist of 0.1 mm
diameter tungsten filaments and are placed 6 cm from
the surface of the anode. Each section has five filaments
with a length of 6 cm. The chamber is evacuated down to
2:0� 10�4 Pa with an oil diffusion pump. Argon and
sulfur hexafluoride are introduced independently into the
chamber under continuous pumping. The pressure of Ar is
5:7� 10�2 Pa and the pressure of SF6 is varied from 0 to
1� 10�3 Pa. The discharge voltage is 70 V and the dis-
charge currents of the two sections are 10–50 mA. Plasma
parameters as measured with a Langmuir probe of 6 mm
diameter are: the electron temperature is approxi-
mately 1.1 eV and the electron density is approximately
3:8� 108 cm�3. Wave signals are detected with the axially
movable Langmuir probe which is biased positively with
respect to the plasma potential (� 1:5 V) to collect the
electron saturation current and is therefore sensitive to the
perturbed electron density.
First, we start the experiment with a positive ion plasma,

i.e., without introducing SF6 gas into the Ar discharge. A
positive sinusoidal pulse is applied to the anode of the
source. The pulse excites ion-acoustic solitons (KdV sol-
itons) [2,13]. Next SF6 gas is introduced into the chamber
to a critical partial pressure. At the critical partial pressure,
the effective density of F� ions divided by Arþ ions is 0.1
[4]. At this pressure, the KdV solitons disappear and the
modified KdV solitons (both compressive and rarefactive
solitons are excited simultaneously) are seen to propagate
[4,13,14].
Then instead of the positive pulse, a slowly varying

amplitude modulated continuous sinusoidal signal is ap-
plied to the source anode and ion-acoustic perturbations
are excited. Examples of observed signals at different
distances from the separation grid for fixed carrier ampli-
tude (5.4 V peak to peak) are shown in Fig. 2. The carrier
frequency is 350 kHz and modulation frequency is 31 kHz.
Close to the grid the observed signals resemble the applied
signal. With increasing distance the compression of the
wave packet sets in and the first Peregrine soliton emerges
at 10.5 cm. The signals recorded at 10.5, 12.5, and 14.5 cm
are shown with different amplitude scale for better resolu-
tion. The perturbation grows in amplitude (which is mea-
sured as the ratio of the soliton amplitude to that of the
nearby carrier wave) and reaches a maximum at 12.5 cm.
The observed maximum amplitude is 2.5 times the nearby
carrier wave. The width of the perturbation becomes
narrower during growing stage. At further distances
(�14:5 cm) the perturbation decays. This observation
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FIG. 1 (color online). Numerical result of Eq. (3) for different
values of a0. Parameters used are! ¼ 0:7!pi, (!pi ¼ 492 kHz),

k ¼ 0:74kD, kD ¼ 1=�D ¼ 20:0 cm�1, x ¼ 13:0 cm.
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indicates one important characteristic of Peregrine soliton
that is the spatiotemporal focusing effect which distin-
guishes it from other solitary waves. The perturba-
tion moves with group velocity and measured to be
2:1� 105 cm s�1 (Mach number� 1:17).

In order to compare the observed Peregrine soliton with
the numerical results we excite the wave with different
excitation voltages (Vc) of the carrier wave at a fixed probe
position (x ¼ 13:6 cm). The observed signals are shown in
Fig. 3. At lower excitation amplitude the perturbation
shape is of the envelope type which is similar to the
numerical result (Fig. 1) for smaller a0 value. The
Peregrine soliton is created when the excitation amplitude
is � 4:7 V. The amplitude of the highest Peregrine soliton
(corresponding to Vc ¼ 6:0 V) observed is approximately
3.5 times that of the nearby carrier wave which agrees with
the theoretical prediction [7]. The same effect is seen in the
numerical results when the Peregrine soliton is formed for
higher values of a0. A direct comparison of the observed
time series of the Peregrine soliton with numerical results
is shown in Fig. 4. The shape of the observed soliton
reasonably agrees with the numerical results. The peak to
peak amplitude of the observed soliton is �2:5 times the
carrier wave amplitude and the breather maximum is
flanked by deep trough on the either side which is an
important criterion to be identified as a Peregrine soliton.
This observation is consistent with the previous experiment

[9]. The slight shift in the phase of the carrier part with
theory is probably due to the presence of pseudowave in
front of the solitons [15]. However, detailed investigation is
necessary for confirmation. We analyzed the wave signals
shown in Fig. 3 using the fast Fourier transform (FFT). The
obtained frequency spectrum is triangular of which the
peak is at the carrier frequency. This result is the same as
the one obtained in the experiments using fiber optics [8]
and deep water waves [9].
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FIG. 3. Signals recorded for different excitation amplitudes of
the carrier wave. The probe is fixed at 13.6 cm from the
separation grid. Top trace represents the applied signal with
carrier and modulation frequencies 350 and 31 kHz, respectively.
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FIG. 4 (color online). Comparison of the time series signal
(solid line) observed at 13.6 cm with the theoretical Peregrine
soliton (dashed line) obtained by using Eq. (3). The applied
carrier and modulation frequencies are 350 and 31 kHz, respec-
tively. Vc ¼ 5:9 V. The parameters used for numerical
calculations are ! ¼ 0:7!pi, (!pi ¼ 492 kHz), k ¼ 0:74kD,

kD ¼ 1=�D ¼ 20:0 cm�1.
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FIG. 2. Observed signals of the electron density perturbation at
different probe positions from the separation grid. The top trace
is the applied signal with carrier and modulation frequencies 350
and 31 kHz, respectively. Peak to peak amplitude of the applied
carrier wave (Vc) is fixed at 5.4 V. Signals observed at 10.5 to
14.5 cm are shown with different amplitude scale (0:10=div) for
better resolution.
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The width W of the observed Peregrine solitons is
measured and the results are shown in Fig. 5 as a func-
tion of the normalized amplitude. The result shows that
W � ð�n=nÞ is almost constant, which agrees with the
theoretical result obtained from the numerical calculation
of Eq. (2). This characteristic of the Peregrine soliton, i.e.,
the width� amplitude is constant, is the same as the
modified KdV soliton [4] and the envelope soliton [6].
Equation (7) of Ref. [9] also predicts a similar result.

In summary, Peregrine solitons are observed in the
multicomponent plasma with negative ions when the den-
sity of the negative ions is equal to the critical value.

Considering the previous experiment on mKdV solitons
and envelope solitons, Peregrine solitons have also been
found to propagate in the negative ion plasma.
The authors would like to thank Dr. K. E. Lonngren for

suggesting the present experiment.
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FIG. 5. Measured widths W normalized with the electron
Debye length �D as a function of amplitude �n
ðpeak to peakÞ=n, where �n is the perturbed electron density.
The solid curve is the theoretical width estimated from the wave
signals as shown in Fig. 1 [W � ð�n=nÞ ¼ 11:5].
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