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A rigorous theory for the generation of a large-scale magnetic field by random nonhelically forced

motions of a conducting fluid combined with a linear shear is presented in the analytically tractable limit

of low magnetic Reynolds number (Rm) and weak shear. The dynamo is kinematic and due to fluctuations

in the net (volume-averaged) electromotive force. This is a minimal proof-of-concept quasilinear

calculation aiming to put the shear dynamo, a new effect recently found in numerical experiments, on

a firm theoretical footing. Numerically observed scalings of the wave number and growth rate of the

fastest-growing mode, previously not understood, are derived analytically. The simplicity of the model

suggests that shear dynamo action may be a generic property of sheared magnetohydrodynamic

turbulence.
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Introduction.—Magnetogenesis, or the origin of cosmic
magnetism, is one of the fundamental problems in theo-
retical astrophysics. It has long been believed that the
magnetic fields observed in most astrophysical bodies
owe their existence to the dynamo effect associated with
the turbulence of the constituent plasmas. It is not con-
troversial that turbulence of a conducting fluid amplifies
magnetic fluctuations at scales comparable to or smaller
than the scale of the motions. Small-scale magnetic fluc-
tuations are indeed observed ubiquitously, but in most
astrophysical systems, one also finds magnetic fields co-
herent on scales larger than the scale of the turbulence
(e.g., [1]). Generation of such fields, or mean-field dynamo
action, is expected to require a combined action of turbu-
lence and some large-scale-coherent feature. One well-
known such additional ingredient is net kinetic helicity
(or, more generally, reflectional asymmetry) of the motion.
Under certain conditions, its presence can cause growth of
large-scale (‘‘mean’’) magnetic field, known as the� effect
[2]. While deriving the � effect for realistic turbulent
systems requires rather drastic closure assumptions, which
usually cannot be justified rigorously and have, in fact,
been called into question by numerical and analytical
considerations [3], it is at least clear that the effect exists
in the physically realizable and analytically treatable limit
of low magnetic Reynolds number (Rm) [2,4]. This proof-
of-concept analytical result, together with intuitive argu-
ments [5] and a body of numerical evidence [6,7], have
helped build a case for the � effect as a real physical
phenomenon (although whether it can coexist with the
small-scale dynamo at large Rm is far from certain [3]).

It has been suggested [8–12] that even in the absence of
mean helicity, mean-field dynamo action is possible if a
large-scale velocity shear is present. The importance of
such a possibility can hardly be overestimated, as shear is a

ubiquitous feature in astrophysics (usually associated with
differential rotation). A recent numerical study [13,14]
showed that the shear dynamo does exist, but its nature
has remained poorly understood. The uncertainty is in-
creased by the fact that, while the original derivation of
the effect relied on a quantitative outcome of a closure
calculation [11], the effect proved difficult to identify by
numerical computation of the mean-field-theory coeffi-
cients [15] and appeared to go away in rigorously solvable
limits: the white-noise-velocity model and low-Rm mag-
netohydrodynamics [4,16–18] (but see [19]).
In this Letter, our aim is a minimal proof-of-concept

calculation that puts the shear dynamo effect on a firm
theoretical footing akin to that enjoyed by the � effect.
We propose a very simple quasilinear mean-field theory
that rigorously predicts a large-scale dynamo driven
by randomly forced shearing waves in the limit of
Rm � Re � 1. The effect requires no adjustable parame-
ters. We also recover the scalings of the wave number and
growth rate of the fastest-growing mode that were observed
in a number of numerical studies [13,14,20] but have not so
far been explained analytically.
Shearing waves.—First let us introduce a model velocity

field that will be used to obtain a dynamo. Consider an
incompressible fluid with an imposed background linear
shear, U ¼ Sxey, and assume that the magnetic field is

dynamically weak, so the Lorentz force is negligible.
Then the velocity deviation from U satisfies

@tuþSx@yuþSuxeyþu �ru¼�rpþ�r2uþf ; (1)

where p is pressure determined from incompressibility
r � u ¼ 0, � is viscosity and f is a random body force,
assumed to be statistically homogeneous in time and space
and to have a characteristic scale ‘f.
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We now make two simplifying assumptions. First, let
Re� urms‘f=� � 1, so we can neglect the nonlinear term

in Eq. (1). Second, let @zu ¼ 0 and @zf ¼ 0, resulting in a
‘‘quasi-2D’’ velocity with all three vector components but
no z dependence. This velocity will make our calculations
particularly transparent. As indicated by numerical experi-
ments [21], it is a favorable but not a uniquely special case
as a dynamo. The xy-plane velocity now has a stream
function: u? ¼ ez � r�. Similarly, f? ¼ ez � rF. We
seek solutions of (the linearized) Eq. (1) as superpositions
of ‘‘shearing waves’’ [22]:

� ¼ X
k0

�k0ðtÞeikðtÞ�r; uz ¼
X
k0

uzk0ðtÞeikðtÞ�r; (2)

where k0 ¼ kx0ex þ kyey, kðtÞ ¼ ðkx0 � StkyÞex þ kyey.

The amplitudes of the shearing waves satisfy [23]

@t½k2ðtÞ�k0� ¼ ��k4ðtÞ�k0 þ k2ðtÞFk0 ; (3)

@tuzk0 ¼ ��k2ðtÞuzk0 þ fzk0 : (4)

Equation (3) was obtained by taking ez � ½r� Eq: ð1Þ�. For
simplicity, let us consider the forcing to be white in time
(or, equivalently, to have a correlation time much shorter
than the viscous relaxation time ‘2f=�). Then the two-point

velocity correlators are

h�k0ðtÞ��
k00
ðt0Þi ¼ �k0;k

0
0
G�ðt; t0Þ k

2ðt0Þ
k2ðtÞ hj�k0ðt0Þj2i; (5)

huzk0ðtÞu�zk00ðt
0Þi ¼ �k0;k

0
0
G�ðt; t0Þhjuzk0ðt0Þj2i; (6)

where G�ðt; t0Þ ¼ exp½��
R
t
t0 dt

00k2ðt00Þ�. Thus, the correla-
tion time of our velocity field is �c � ‘2f=�. In a more

general case when Re is not small, the velocity correlation
time is set by the nonlinear terms, so �c � ‘f=urms is the

typical turnover time of the turbulence. Nonrigorously,
this case is included in our analysis. To accommodate it,
we introduce the Strouhal number St� urms�c=‘f (follow-

ing [4])—then St� Re for a velocity governed by Eqs. (3)
and (4), and St� 1 for conventional turbulence.

An important quantity to watch is the net (volume-, but
not time-, averaged) helicity

H ðtÞ ¼ hu � ðr� uÞixy ¼ �2
X
k0

k2ðtÞuzk0ðtÞ��
k0
ðtÞ: (7)

We can ensure that its statistical (or, equivalently,
time) average vanishes, hH ðtÞi ¼ 0, by stipulating
hfzk0ðtÞF�

k0
ðt0Þi ¼ 0. This removes the possibility of the

standard � effect [2,4].
Mean-field theory.—The evolution equation for the mag-

netic field B in the presence of linear shear is

@tBþ Sx@yBþ u � rB ¼ B � ruþ SBxey þ �r2B; (8)

where � is the magnetic diffusivity. Since the velocity field
is independent of z, we can separate the dependence of B

on z by expanding B ¼ P
kz
BðkzÞ expðikzzÞ. Only the pro-

jection B? onto the xy plane needs to be calculated be-
cause Bz ¼ ði=kzÞr �B?. For each kz, B

? will satisfy a
closed equation with kz appearing as a parameter and no
mode coupling in kz.
We now seek the solutions of Eq. (8) again in the form of

a superposition of shearing waves, B? ¼ P
k0
B?

k0
ðtÞeikðtÞ�r,

where the perpendicular wave numbers k0 and kðtÞ are
defined in the same way as in the velocity decomposition
[Eq. (2)]. B?

k0
satisfies

@tB
?
k0

¼ SBxk0ey � �½k2ðtÞ þ k2z�B?
k0

þX
k0
0

�k0
0
½ez � k0ðtÞ� � ½kðtÞÎ� Îk0ðtÞ� �B?

k0�k0
0

� ikz
X
k00

uzk00B
?
k0�k0

0
; (9)

where Î is a unit dyadic. We take the large-scale mean
field to be the xy average of the total magnetic field, i.e.
�B ¼ B?

0 . The dynamical equation for the mean field is

given by the k0 ¼ 0 component of Eq. (9):

@t �B ¼ S �Bxey � �k2z �B� ikz
X
k0

uzk0B
?
�k0

�X
k0

�k0½ez � kðtÞ�kðtÞ �B?
�k0

(10)

(note that �Bz ¼ 0 because r � �B ¼ ikz �Bz ¼ 0).
We now calculate B?

�k0
in Eq. (10) in terms of �B via

Eq. (9). This is particularly easy in the limit Rm �
minð1; St; Sh�1Þ, where Rm� urms‘f=� and the shearing

number Sh� S‘f=urms. We also assume kz‘f � 1, which

will be verified a posteriori for the fastest-growing dynamo
mode. With these approximations, the dominant terms in
Eq. (9) are �k2ðtÞB?

k0
and the k00 ¼ k0 components of the

wave number sums, giving

B?
�k0

¼ � ikzu
�
zk0

�Bþ��
k0
½ez � kðtÞ�kðtÞ � �B

�k2ðtÞ : (11)

Substituting this into Eq. (10), we get

@t �B ¼ S �Bxey � ½�þ �ðtÞ�k2z �Bþ ikzez � �̂ðtÞ � �B; (12)

where �ðtÞ ¼ P
k0
juzk0ðtÞj2=�k2ðtÞ � � (negligible

‘‘turbulent diffusivity’’ in the limit of low Rm) and

�̂ðtÞ ¼ 2
X
k0

uzk0ðtÞ��
k0
ðtÞ

�k2ðtÞ kðtÞkðtÞ: (13)

Equation (12) has the form of a standard mean-field
equation [2] with mean electromotive force E ¼ �̂ � �B�
ikz�ez � �B, but it is of stochastic nature: �̂ðtÞ and �ðtÞ
fluctuate with the correlation time �c of the velocity field.
Note that h�̂ðtÞi ¼ 0 because we have constructed our
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velocity field in such a way that huzk0ðtÞ��
k0
ðtÞi ¼ 0

(cf. [8,15,19,24]).
If we now average Eq. (12) over forcing realizations and

look for exponential growth of h �BðtÞi, we will find that,
under the approximations we have made, no such growth
occurs to the lowest order in the standard cumulant expan-
sion [25] used to calculate h�̂ðtÞ � �BðtÞi [26]. While it is
possible that the mean field grows at a higher order in the
expansion, the key question that needs to be addressed at
lowest order is, in fact, not necessarily whether the statis-
tical average of the large-scale field �BðtÞ exhibits exponen-
tial growth, but whether the mean large-scale magnetic
energy hj �BðtÞj2i=2 does.

Large-scale energy.—In order to address this last ques-
tion, we introduce the mean-field covariance vector

C ¼ ð �B�
x
�Bx; �B

�
y
�By; Re �B

�
x
�By; Im �B�

x
�ByÞ; (14)

where Re and Im denote real and imaginary parts. The
evolution equation for C follows directly from Eq. (12):

ð@t þ 2�k2zÞC ¼ ðŜþ kzÂÞ � C; (15)

where we have introduced the matrices

Ŝ ¼

0 0 0 0

0 0 2S 0

S 0 0 0

0 0 0 0

2
666664

3
777775 and

Â ¼

0 0 0 2�yy

0 0 0 2�xx

0 0 0 �2�xy

�xx �yy 2�xy 0

2
666664

3
777775:

(16)

In the following, we will use arabic numerals to refer to the
components of the vectors and matrices in Eq. (15).

We now average Eq. (15) with respect to forcing
realizations using the cumulant expansion [25] to

calculate hÂðtÞ � CðtÞi. Since the Kubo number Ku�
kzÂ�c � kz‘fRmSt � 1, the expansion can be truncated

at the lowest order in Ku. The result is that hCðtÞi satisfies,
for t � �c,

ð@t þ 2�k2zÞhCi ¼ ðŜþ k2zD̂Þ � hCi; (17)

where the term originating from �̂ now has the form of a
(negative) tensor diffusivity

D̂ ¼
Z 1

0
dt0hÂðtÞ � Âðt� t0Þi: (18)

We have also assumed S�c � 1, which allowed us to

neglect the matrix exponentials of Ŝt0 in Eq. (18).

We note that D̂ is block diagonal: its elements are zero

where those of Â are not, and vice versa. It follows that
hC4i ¼ hIm �B�

x
�Byi evolves independently of the other com-

ponents of hCi:

@thC4i ¼ �k2zð2��D44ÞhC4i: (19)

Since D44=�� Rm3St � 1 [27], we conclude that C4

always decays, which means that �Bx and �By asymptotically

have the same complex phase.
With C4 ¼ 0, we are left with a rank-three eigenvalue

problem. If we let hCi / expð2�tÞ, the resulting dispersion
relation will be a cubic equation in �þ �k2z . This

equation can be solved perturbatively in the limit k2zD̂�
k2zÂ

2�c � S or, equivalently, ðkz‘fÞ2Rm2StSh�1 � 1. In

the end, this means that the only element of the tensor D̂
that survives to give a non-negligible contribution is

D12 ¼ 2
Z 1

0
dt0h�yyðtÞ�yyðt� t0Þi; (20)

where t � �c. Then � satisfies

ð�þ �k2zÞ3 � k2zS
2D12

4
¼ 0 (21)

and so, assuming that D12 > 0, the real root of this equa-
tion gives the dynamo growth rate [28]

� ¼ ��k2z þ
�
k2zS

2D12

4

�
1=3

: (22)

The vertical wave number and the growth rate of the
fastest-growing mode are

kpkz ¼ jSj1=2ffiffiffi
2

p
�
D12

27�3

�
1=4 � ‘�1

f Sh1=2St1=4Rm5=4 (23)

(confirming kpkz ‘f � 1) and

�max ¼ jSj
3

�
D12

3�

�
1=2 � urms

‘f
ShSt1=2Rm3=2: (24)

The structure of this mode is such that

hj �Bxj2i
hj �Byj2i ¼ D12

6�
� StRm3; (25)

which is independent of shear.

Discussion.—The scalings derived above, viz., k
pk
z /

S1=2, �max / S, and the independence of hj �Bxj2i=hj �Byj2i
of S, are precisely the ones reported in the numerical
experiments [13,14,20]. One should keep in mind that
most of these simulations were not done in the asymptotic
regime Rm � minð1; St; Sh�1Þ or at particularly small
S�c. The fact that the scalings we have derived neverthe-
less appear to hold even for parameter values at the bound-
ary of the analytically tractable regime might be
interpreted as a testimony to the robustness of the under-
lying physical effect [29]. Indeed, we note that Eq. (22)
rigorously holds for any ‘‘quasi-2D’’ velocity field super-
imposed on a uniform shear flow with the only provisos
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that it has a well defined characteristic length scale, a
correlation time much shorter than the inverse rate of shear,
and the property that huzk0��

k0
i ¼ 0. Our theory shows that

such a velocity field is always capable of dynamo action
provided sufficiently large scales in the z direction are
accessible to the mean field (i.e., provided the system is
large enough). A field of randomly forced shearing waves
at low Re, given by Eqs. (3) and (4), is a physically
realizable example of such a velocity field. For this field,
using Eqs. (5), (6), (13), and (20), and S�c � 1, we get

D12 ¼ 4
X
k0

k4y
hj�k0ðtÞj2ihjuzk0ðtÞj2i

��2k6ðtÞ ; (26)

which is positive, as assumed in Eq. (22).
The key ingredient in the dynamo loop is fluctuations in

the �̂ tensor (13), which, in conjunction with stretching of
the mean field by the background shear flow, provide a
positive feedback [30]. This is evocative of the dynamo
models known as the ‘‘stochastic � effect,’’ which are
based on introducing a fluctuating scalar �yy [8,19,24]—

this has usually been done based on ad hoc nonrigorous
models of how this � comes about. The theory we have
presented here is the first calculation of this kind done from
first principles.

Conclusion.—We have presented a minimal analytically
tractable model of the shear dynamo. The simplicity of the
model suggests that the effect is robust, while its rigorous
validity in the realizable limit of low Rm, weak shear and
for a velocity field consisting of randomly forced shearing
waves at low Re suggests that it is physical and does not
depend on ad hoc closure assumptions. Much remains to be
understood before it can be assessed whether the shear
dynamo offers a panacea for (nonhelical) generation of
large-scale magnetic fields in astrophysical systems. A
further effort in this direction appears worthwhile in view
of the great success enjoyed by shear-induced dynamos in
astrophysically motivated numerical experiments and a
basic similarity of the field structure that they generate
[13,14,20,31]. A companion paper on the quasilinear ele-
mental shear dynamo, exploring broader parameter re-
gimes, is [32]. A major outstanding task is to understand
how the shear dynamo mechanism of generating large-
scale fields coexists with the fluctuation dynamo of
small-scale fields, which will inevitably be present at suf-
ficiently large Rm [14] and, therefore, in any real astro-
physical situation (cf. [3]).
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