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A model for incomplete reconnection in sawtooth crashes is presented. The reconnection inflow during

the crash phase of sawteeth self-consistently convects the high pressure core toward the reconnection site,

raising the pressure gradient there. Reconnection shuts off if the diamagnetic drift speed at the

reconnection site exceeds a threshold, which may explain incomplete reconnection. The relaxation of

magnetic shear after reconnection stops may explain the destabilization of ideal interchange instabilities

reported previously. Proof-of-principle two-fluid simulations confirm this basic picture. Predictions of the

model compare favorably to data from the Mega Ampere Spherical Tokamak. Applications to transport

modeling of sawteeth are discussed. The results should apply across tokamaks, including ITER.
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Sawtooth crashes in tokamaks occur when the core
temperature rapidly drops following a slow rise [1].
Large sawteeth are deleterious for fusion because they
spoil confinement, while small sawteeth may be beneficial
by limiting impurity accumulation [2]. Kadomtsev sug-
gested the cause is the m ¼ 1, n ¼ 1 tearing mode [3],
where m and n are poloidal and toroidal mode numbers.
The predicted crash duration is the time it takes Sweet-
Parker reconnection to process all available magnetic flux.
This agreed with early experiments and simulations.

Soon after, cracks in the model appeared. Crash times in
larger and hotter tokamaks were much faster than
Kadomtsev’s prediction [4,5]. Also, Kadomtsev’s model
assumes all available magnetic flux reconnects (reconnec-
tion is ‘‘complete’’); however, experiments reveal that
reconnection is usually incomplete [6]. Equivalently, the
safety factor q ¼ rB’=R0B� does not exceed 1 everywhere

after a crash, where R0 and r are the major and minor radii
and B’ and B� are toroidal and poloidal magnetic fields.

Many models of incomplete reconnection exist, but
there is no consensus on which, if any, is correct.
Examples include stochastic magnetic fields [7], diamag-
netic suppression of the nonlinear internal kink mode [8,9],
diamagnetic and pressure effects at the magnetic island
[10,11], trapped high energy particles [12–14], a flattened
q profile [15], and the presence of shear flow [16,17].

The uncertainty of the cause of incomplete reconnection
impacts tokamak transport modeling. Low-dimensional
transport models capture the sawtooth period and ampli-
tude [18], but the fraction of flux reconnected is an input
parameter rather than self-consistently calculated. A self-
consistent theory of incomplete reconnection would im-
prove tokamak transport models.

In this Letter, we propose a model for incomplete re-
connection in sawteeth due to the self-consistent dynamics
of magnetic reconnection, building on established proper-
ties of diamagnetic effects [9,19]. After describing the
model, we present numerical simulations confirming its

key aspects. Then we show that the model is consistent
with data from the Mega Ampere Spherical Tokamak
(MAST) [20]. Finally, applications and limitations of the
result are discussed.
To understand why reconnection in Kadomtsev’s model

is complete, consider them ¼ 1, n ¼ 1 reconnection plane
sketched in Fig. 1. The reversed (auxiliary) magnetic field
B� is in red, the high pressure core is in gray, and the
reconnection site is the blackX.When reconnection begins,
outflow jets (in blue) are driven by tension in newly recon-
nected field lines. Mass continuity induces plasma inflow
from upstream (also in blue). This flow convects more
magnetic flux (if available) towards the reconnection site,
which reconnects. Thus, reconnection is self-sustaining.
We argue that the key to explaining incomplete recon-

nection is the effect of reconnection dynamics on the

FIG. 1 (color). Sketch of the m ¼ 1, n ¼ 1 reconnection
plane. Reconnecting (auxiliary) magnetic fields B� are in red
with the rational surface rs indicated by the dotted red line.
Plasma inflows vin and outflows vout are in blue with the
reconnection site at the black X. The gray core moves from its
initial position centered at the yellow X. The pressure gradient is
the green arrow. The helical guide field Bh and the diamagnetic
drift velocities v�i and v�e are shown.
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pressure gradient at the reconnection site. Suppose the core
is initially centered at the yellow X. The pressure gradient
at the reconnection site (the green arrow) is radially inward
and relatively weak. As the reconnection inflow self-
consistently convects the core outward, the pressure
gradient at the reconnection site increases. The outward
motion of the core has long been seen in observations [5].

In the presence of a strong out-of-plane (guide) mag-
netic field Bh, in-plane pressure gradients lead to in-plane
diamagnetic drifts, sketched in Fig. 1. Diamagnetic (!�)
effects are known to stabilize linear and nonlinear tearing
[9,21,22], which continues to be actively studied
[19,23,24]. It was shown [19] that reconnection does not
occur if

jv�i � v�ejout > vout; (1)

where vout is the reconnection outflow speed, v�� ¼
�rp� � B=ðq�n�B2Þ is the diamagnetic drift velocity
measured at the reconnection site for species � ¼ i; e,
and the ‘‘out’’ subscript refers to the outflow direction.

We propose that the increase in v�i and v�e as the
pressure gradient self-consistently increases due to recon-
nection causes the left-hand side of Eq. (1) to increase. If
Eq. (1) is never satisfied, reconnection is complete. If the
pressure gradient becomes large enough, reconnection
ceases. Since Eq. (1) can be satisfied even when free
magnetic energy remains, this provides a possible mecha-
nism for incomplete reconnection. This model departs
from previous ones which did not emphasize the role of
reconnection in increasing diamagnetic effects [8,9] and
treated pressure gradients at magnetic islands [10,11]
rather than the reconnection site.

This model complements, and may explain key global
features of, recent observations at MAST [20]. They ob-
serve that jrTej increases during a sawtooth period, peak-
ing at the end of the crash (their Fig. 3), qualitatively
consistent with the model. They also show that secondary
ideal-MHD instabilities are destabilized at the end of the
crash cycle. Reconnection would also play an important
role in this process. When reconnection ceases, the
electron-scale current sheet broadens, reducing the mag-
netic shear in a region where jrpj is large. Decreased shear
is known to destabilize interchange instabilities (e.g., [25]).

To test the model, proof-of-principle numerical simula-
tions are performed using F3D [26], a two-fluid code em-
ploying a two-dimensional slab geometry with periodic
boundary conditions. This geometry is appropriate because
motion in the plane normal to the guide magnetic field is
well described in two dimensions, toroidal effects are not
expected to play a role on the short time scales in question
(tens of �s), and three-dimensional toroidal simulations
employ unphysical forcing terms to obtain sawteeth [27].
These simulations do not contain toroidal effects which
lead to secondary ideal-MHD instabilities [20] because this
facet of the evolution is outside the scope of this study.

Electron pressure is evolved assuming an adiabatic ideal
gas with a ratio of electron specific heats �e ¼ 5=3. Since
the relative diamagnetic speed is the key parameter, ions
are assumed cold for simplicity. Magnetic fields and mass
densities are normalized to arbitrary values B0 and �0,

velocities to the Alfvén speed cA0 ¼ B0=ð4��0Þ1=2,
lengths to the ion inertial length di0 ¼ c=!pi ¼
ðm2

i c
2=4��0Z

2
effe

2Þ1=2, times to the ion cyclotron time

��1
ci0 ¼ ðZeffeB0=micÞ�1, electric fields to E0 ¼ cA0B0=c,

and pressures to p0 ¼ B2
0=4�, where mi is the ion mass, c

is the speed of light, e is the proton charge, and Zeff is the
effective atomic number.
The coordinate system has x parallel to the inflow

(radial), y parallel to the outflow (poloidal), and z in the
out-of-plane (toroidal) direction, invariant in the present
two-dimensional simulations. The equilibrium has an in-
plane magnetic field profile of a double Harris sheet,

ByðxÞ ¼ tanh

�
x� Lx=4

w0

�
� tanh

�
xþ Lx=4

w0

�
þ 1;

where Lx � Ly ¼ 102:4� 204:8 is the system size and

w0 ¼ 0:5 is the initial thickness of the current sheet. For
this equilibrium, the toroidal mode number n ¼ 0 mani-
festly, so the rational surfaces are xs ¼ �Lx=4 ¼ �25:6.
We focus on a single mode because there is typically a
dominant mode in sawteeth; the n ¼ 0 mode is chosen for
simplicity, but is not expected to qualitatively alter the
conclusions. The mass density is initially � ¼ 1. The
initial electron pressure profile is

peðxÞ ¼ 1

2
ðp1 þ p2Þ þ 1

2
ðp1 � p2Þ

�
�
tanh

�
xþ 3Lx=8

wp

�
� tanh

�
x� 3Lx=8

wp

�
� 1

�
:

The pressure gradient is localized near x ¼ �3Lx=8 ¼
�38:4 rather than at the rational surfaces xs. Thus, pe at
the reconnection site is initially uniform. The length scale
of the pressure gradient is wp ¼ 2. The guide magnetic

field BzðxÞ has a mean value of 5 with a profile that ensures
initial pressure balance, pþ B2=2 ¼ const.
The data we present are from simulations with a grid

scale of � ¼ 0:05. A test simulation with � ¼ 0:025 con-
firms the resolution is sufficient. The equations employ
fourth-order diffusion with coefficient D4 ¼ 2� 10�5 to
damp noise at the grid scale; D4 has been varied to ensure
the key physics is not sensitive to it. The electron to ion
mass ratio is 1=25. Simulations include no resistivity be-
cause experimental crash times are faster than collisional
reconnection times. The presented simulations do not em-
ploy a parallel thermal conductivity, but test simulations
with �jj ¼ 0:08 reveal no significant changes. Tearing is

initiated by a small coherent perturbation to the in-plane
magnetic field of amplitude 0.01. It is known that second-
ary islands can spontaneously arise in reconnection
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simulations; due to symmetry, such islands would stay at
the original X line [28]. To prevent this, initial random
magnetic perturbations of magnitude 2:0� 10�5 break
symmetry so secondary islands are ejected.

The principal simulation employs p1 ¼ 5, p2 ¼ 25 so
v�e will exceed vout when the high pressure plasma con-
vects in. Other simulation parameters are carefully chosen:
Bz � By as is relevant to sawteeth and pe is large enough

so the ion Larmor radius �s ¼ cs=�ci exceeds the electron
skin depth de ¼ c=!pe, allowing fast reconnection to pro-

ceed [29,30]. Here, cs ¼ ð�eZeffTe=miÞ1=2 is the ion acous-
tic speed, and Te is the electron temperature.

Upon evolving the system, Hall reconnection occurs
initially and the high pressure plasma convects towards
the reconnection site as expected. The reconnection rate E,
measured as the time rate of change of magnetic flux
between the X line and the O line, is plotted as the solid
(red) line in Fig. 2(a). It increases from zero to its expected
value near 0.1 [31] by t� 90, where it reaches a steady
state with a single X line. (The variation between t ¼ 40
and 90 is due to transient secondary island formation and
coalescence.) At t ’ 195, E begins decreasing. It decreases
to below zero, where it fluctuates for a number of Alfvén
crossing times. Thus, reconnection has shut off.

To determine the cause, the electron diamagnetic speed
v�e at the reconnection site is plotted as a function of time
in Fig. 2(b) as the dashed (black) line. For comparison, the
outflow speed vout is plotted as the solid (red) line.
Asymmetric outflows occur when there is a pressure gra-
dient in the outflow direction [32], and since such gradients
self-consistently generate here, vout is calculated as the
average of the maximum electron outflow speeds from
either side of the reconnection site, averaged over 5de
when turbulent.

Figure 2(b) reveals that v�e is small initially, but in-
creases in time once the pressure gradient reaches the
reconnection site at t ’ 140. It increases until it becomes
comparable to vout at t ’ 195 (the vertical dashed line), the
same time E begins to decrease. Therefore, reconnection is
throttled when Eq. (1) is first satisfied.
To ensure diamagnetic effects occur, the out-of-plane

current density Jz near the X line is plotted in Fig. 3(a)
before (t ¼ 125) and 3(b) after (t ¼ 180) the pressure
gradient arrives, with in-plane magnetic field lines super-
imposed. The guide field is in the �z direction and rpe is
in the �x direction. The reconnection site drifts in the �y
direction, the direction of v�e. Note, a secondary instability
(recently speculated to be a drift instability [33]) appears.
The increased variability of v�e and E after t ’ 205 are
attributed to this instability.
To ensure the observed effect is caused by the pressure

gradient, simulations with other pressure profiles are per-
formed.When there is no gradient with p1 ¼ p2 ¼ 5, there
is no decrease in E, plotted as the dashed (blue) line in
Fig. 2(a). The same is true for p1 ¼ p2 ¼ 25 (not plotted).
When p1 ¼ 5, p2 ¼ 7, no drop in reconnection rate is
observed because the maximum v�e only reaches �1, but
vout � 2 so Eq. (1) is never satisfied. In summary, the
simulations confirm the basic prediction of the model:
reconnection ceases when large enough pressure gradients
self-consistently convect into the reconnection site despite
the presence of free magnetic energy.
Postcessation features are important for the subsequent

dynamics. Figure 3(c) shows Jz significantly after the
pressure gradient reaches the reconnection site (t ¼ 210).
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FIG. 2 (color online). (a) Reconnection rate E as a function of
time twith and without a pressure gradient. (b) Diamagnetic drift
speed v�e at the reconnection site and outflow speed vout vs t.
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125), (b) after (t ¼ 180), and (c) significantly after (t ¼ 210) the
pressure gradient reaches the reconnection site. The x and y axes
correspond to the radial and poloidal directions, respectively.
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The current layer clearly broadens as reconnection stops,
reducing the magnetic shear at the reconnection site, as
evidenced by the negative reconnection rate in Fig. 2(a).
The reduced shear would make the system more prone to
interchange instabilities, which were argued to occur in
Ref. [20].

Equation (1) provides a quantitative prediction of the
conditions at the end of sawteeth; we assess it with data
from MAST [20]. To transform into the plane of reconnec-
tion perpendicular to the m ¼ 1, n ¼ 1 helical direction,
the reconnecting (auxiliary) field B� is related to the toroi-
dal B’ and poloidal B� fields by

B�ðrÞ ¼ B� �
�
r

R0

�
B’: (2)

At MAST, R0 ¼ 0:85 m [34] while B’ ’ 0:4 T and

B� ’ 0:15 T [35]. The rational surface rs is where
B� ¼ 0 in Eq. (2), which gives rs ’ 0:32 m. This result
agrees well with Fig. 1(a) of Ref. [20]. The helical guide
field at rs is Bh ¼ B’ð1þ rs=R0Þ ’ 0:55 T.

To test the model, Eq. (1) must be evaluated at the end of
the sawtooth crash. The outflow speed scales with cAe, the
electron Alfvén speed based on the field B�e upstream of
the electron current layer. Assuming the large guide field
limit with Bh � B� in the vicinity of rs, the thickness of
the electron current layer scales as the electron Larmor

radius �e ¼ vth;e=�ce [36], where vth;e ¼ ð�eTe=meÞ1=2 is
the electron thermal speed and �ce ¼ eB=mec is the elec-
tron cyclotron frequency. Using Te ’ 500 eV at rs [20] and
�e ¼ 5=3, we find �e ’ 0:013 cm. To findB�e, we evaluate
Eq. (2) at rs � 2�e [37], which gives B�e ’ 5:9� 10�5 T,
justifying the strong guide field assumption. Using this
value gives vout � 14:2 km=s, where ne ’ 6� 1019 m�3

is estimated from Fig. 2 in Ref. [20].
To estimate v�e, note jrpej=ne¼jrTejþTeðjrnej=neÞ.

The right-hand side is estimated at the end of the crash
from Figs. 1(e), 2, and 3 of Ref. [20] to be jrpej=ne ’
7400 eV=m. Then, the electron diamagnetic speed is
v�e ¼ jrpej=ðqneBhÞ � 13:5 km=s. Equation (1) includes
ion diamagnetic effects, but complementary ion data are
unavailable [35]. Assuming the ion temperature has a
similar profile as the electrons with Te > Ti, we expect
v�e < jv�ij þ jv�ej< 2v�e. Thus, the two speeds agree
rather well, showing the agreement with the data is also
quantitative.

As a further consistency check, we compare the speed of
the core to the inflow speed. The core’s speed is estimated
from Figs. 1(d)–1(f) of Ref. [20] by dividing its displace-
ment (’ 0:08 m) by the elapsed time (’ 0:04 ms), giving a
speed of �2 km=s. The reconnection inflow speed scales
like 0:1cAi [26], where cAi is the ion Alfvén speed based on
the field B�i upstream of the ion current layer. The ion layer
thickness with a large guide field scales like the ion Larmor
radius �s [21]. Using Zeff � 1 [38] and mi ¼ 2mp for a

deuterium plasma [34], we find �s � 0:77 cm. As in the

calculation of B�e, we evaluate Eq. (2) at rs � 2�s, giving
B�i ¼ 6:7� 10�3 T. Then, cAi � 13 km=s, so the inflow
speed is ’ 1:3 km=s. Thus, the inflow speed is comparable
to the speed of the core, as predicted.
For tokamak applications, Eq. (1) may be recast in terms

of more familiar quantities. Assuming vout � cAe in Eq. (1)
and rewriting Eq. (2) in terms of q and expanding to lowest
order in r for a small displacement (2�e) from rs, B�e ’
B�q

02�e, where the prime denotes a radial derivative.
Thus, Eq. (1) becomes

1

eBh

��������
p0
i

Zeffni
þ p0

e

ne

��������>
2�eB�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�mene

p q0; (3)

where all quantities are evaluated at rs. This expression is
reminiscent of the condition on p0 and q0 for suppression of
sawteeth derived from linear tearing theory [21,39].
In conclusion, we have described a model for incom-

plete reconnection in sawtooth crashes, tested the basic
physics with numerical simulations, and shown it is con-
sistent with data from MAST. Interestingly, recent simula-
tions of sawteeth revealed complete reconnection in MHD,
but incomplete reconnection in extended MHD with elec-
tron and ion diamagnetic effects [27,40]; the present result
may be relevant. Equation (1) may be useful for low-
dimensional transport modeling, which currently use
ad hoc models to achieve incomplete reconnection [41].
The present results are machine independent, so they
should apply to both existing tokamaks and future ones
such as ITER.
In future studies, the model should be tested with other

extended-MHD effects such as ion diamagnetic effects and
higher �k. The restriction on toroidal mode number n
should be relaxed. The effect of the electron pressure
profile on the dynamics and the secondary (drift) instability
should be addressed; this may need to utilize particle-in-
cell simulations. Including 3D toroidal geometry is critical
for exploring secondary ideal-MHD instabilities.
Comparisons to multiple tokamak discharges should be
done to test the scaling.
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