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The flow of liquid helium through a single nanohole with radius smaller than 25 nm was studied. Mass

flow was induced by applying a pressure difference of up to 1.4 bar across a 50 nm thick Si3N4 membrane

and was measured directly by means of mass spectrometry. In liquid He I, we experimentally show that

the fluid is not clamped by the short pipe with diameter-to-length ratio D=L ’ 1, despite the small

diameter of the nanohole. This viscous flow is quantitatively understood by making use of a model of flow

in short pipes. In liquid He II, a two-fluid model for mass flow is used to extract the superfluid velocity in

the nanohole for different pressure heads at temperatures close to the superfluid transition. These

velocities compare well to existing data for the critical superflow of liquid helium in other confined

systems.
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Capillary flow experiments have been conducted for
decades in micron sized channels but only recently has
the technology become available to fabricate a cylindrical
flow channel of any desired dimension in the nanometer
range. Flow experiments across solid-state nanoholes (and
nanopores) [1] have attracted a lot of attention over the past
few years mainly for the detection of macromolecules [2].
The same fabrication technique can readily be used to
study flow of many fluids, whether classical or quantum
in nature. In this work, we are interested in the transport
properties of a quantum fluid, liquid helium, flowing
through a single cylindrical nanohole of 22.8 nm radius.
This is motivated by a desire to understand the flow of
liquid helium in very small apertures, where ultimately in
the one-dimensional limit, the quantum fluid might form
the long sought-after Luttinger liquid [3].

Liquid helium in constrained geometries behaves differ-
ently than in the bulk and has therefore been subject to
extensive investigation in porous media such as Vycor [4],
zeolites [5], and aerogel [6], as well as in superfluid films
[7]. The experiment we present here has some advantages
over these systems, which are made up of a large number of
channels and the signal extracted from them is necessarily
averaged over the whole distribution of dimensions and
defects present in the material. The fabrication and detec-
tion method we use gives us complete control of the size
and shape of the nanohole (from �1 nm to 100’s of nm
diameter), whereas porous media typically have fixed di-
mensions for a given material.

Confined systems have been of great interest for the
study of superfluid helium, in particular, for the measure-
ment of superfluid critical velocity. When superfluid he-
lium is forced through a channel, it eventually reaches a
critical velocity at which point it begins to dissipate energy,
but exactly how a superfluid dissipates energy has been a
long-standing problem in condensed matter physics.
Critical velocities have been experimentally measured in

many systems and were found to vary from mm=s to
several m=s, values that are much lower than the Landau
critical velocity,�60 m=s. This discrepancy and the strong
dependence on channel diameter of observed critical ve-
locities were explained by a size-dependent model of
quantized vortices in the superfluid. Many other flow ex-
periments found critical velocities independent of the sys-
tem size and with a near-linear dependence on temperature
[8]. These were coined intrinsic critical velocities so as to
distinguish them from the ‘‘extrinsic’’ size-dependent ones
and they have been studied by many groups [9–11] in
superfluid flow experiments, for pores in the range of
10�5–10�6 m. The currently accepted interpretation of
these results is a thermally activated vortex nucleation
process acting as a dissipation mechanism for the super-
fluid [12]. In this work, the superfluid flow constrained to a
single nanometer-sized channel was studied such that its
superfluid velocity could be inferred from the measured
mass flow and compared with existing critical velocity
data. To our knowledge this is the first time that a super-
fluid mass flowwas directly detected for an aperture well in
the nanometer scale regime.
Our sample is made from a 50 nm thick low-stress

amorphous silicon nitride (Si3N4) layer grown on a
2.7 mm wide square silicon wafer with a region where
the silicon was etched to obtain a rectangular silicon nitride
membrane �30 �m wide. A cylindrical nanohole with
22:8� 0:7 nm radius was drilled in this membrane using
a field emission TEM [see Fig. 1(a)]. Confirmation of
the radius of the nanohole was accomplished by measuring
the mass flow in the gas phase of helium at 20 K in the
Knudsen regime. In this regime, a Knudsen effusion model
of gas flow was shown previously [13] to give an accurate
measure (within a few percent) of the nanohole radius. This
gas flow measurement yielded a radius of 23:1� 0:5 nm
for the sample used in this work. It was conducted after all
data were taken and as such provides strong support that
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the nanohole size remained unchanged throughout the
experiment.

The sample wafer was epoxy sealed to a support made of
Invar alloy separating two reservoirs (inlet and outlet) in an
experimental cell designed such that any mass transfer
between the two reservoirs is restricted to occur through
the nanohole. Capillaries connect the extremities of the
experimental cell to a gas handling system such that pres-
surized helium can be introduced in the cell, flow through
the nanohole, and be pumped from the outlet of the cell by
a mass spectrometer [see Fig. 1(b)]. We used silver powder
packed heat exchangers to condense helium before it enters
the inlet of the cell and to ensure a good thermal anchor to
the cryostat. Since the outlet is kept under vacuum, the
pressure Pin of the liquid helium above the membrane
determines the pressure difference �P¼Pin�Pout¼Pin

driving the mass flow through the nanohole. This mass flow
was measured between 1.6 and 3.5 K and up to 1.4 bar of
pressure difference across the nanohole. A calibrated leak
of 4:5� 10�3 ng=s� 10% was used to calibrate the mass
spectrometer before the experiments.

A typical experiment goes as follows: we first empty
both sides of the cell at a temperature well above the
helium boiling point so as to ensure that no residual helium
is present in either reservoir. The mass spectrometer is then
connected to the outlet of the cell to determine a back-
ground signal that is treated as an offset to the pressure-
driven flow of interest in this study. This background signal
was always found to be below 5� 10�4 ng=s, which is less
than the mass flow measurement presented here by a few
orders of magnitude. The next procedure is a cooling of the
whole apparatus below the � transition so that gaseous
helium introduced from the gas handling system condenses
and fills the heat exchanger and inlet of the experimental
cell. Once condensation is achieved, the higher pressure
above the membrane forces the liquid helium to flow
through the nanohole. When atoms reach the very low

pressures in the lower reservoir, they evaporate and are
pumped out to the mass spectrometer. The mass flow signal
is then monitored as the temperature is slowly increased.
This whole procedure was repeated at different pressure
differences simply by varying the pressure Pin above the
nanohole.
The results of several temperature sweeps are presented

in Fig. 2. The mass flowwas monitored at constant pressure
while the temperature of the entire cell was increased from
�1:6 K to temperatures above T�. At each temperature,
the system was given several minutes to equilibrate ther-
mally until the mass flow signal reached a new constant
value. The time constant for the system to converge to this
new value was found to be between �600 and �1200 s,
depending on temperature.
Focusing on the data at temperatures above T� in Fig. 2,

our data unambiguously show a strong dependence of the
mass flow on pressure. This means viscous flow of liquid
helium through the nanohole is observed, and by extension
that the flow of the normal component should not be
ignored in helium II. Indeed one might naively make the
assumption that it should be neglected since channels of
the order of 10�7 m are frequently used as a superleak to
clamp the normal component and measure exclusively
superfluid signals. Our work shows this is not the case
for this nanohole geometry.
Modeling of the mass flow must take into account the

acceleration of the fluid at the ends of the short pipe, since
the diameter-to-length ratio D=L ’ 1 for this nanohole is
too large for the infinite-pipe approximation to hold. A
derivation for a viscous flow through a short cylindrical

FIG. 2 (color). Mass flow of liquid helium in a single nanohole
of 22.8 nm radius at pressure differences of 0.069, 0.145, 0.241,
0.345, 0.483, and 1.45 bar, respectively, from bottom to top. The
inset shows the pressure dependence (in bar) of the transition
temperature (in kelvin) for the onset of superfluid mass flow
through the nanohole; the bulk superfluid transition T� is shown
by a dashed line.

FIG. 1 (color). (a) TEM imaging of nanohole. (b) Schematics
of the experimental cell. The SiN membrane (M) is epoxied to a
support (S) to separate the cell between the inlet (I) and
outlet (O).
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channel was derived by Langhaar [14] and gives �P ¼
32�Lv
�D2 þ 1

2�v
2, where � is a geometric parameter intro-

duced to take into account the acceleration of the fluid
near the ends, and �, �, and v are the dynamic viscosity,
density, and average velocity, respectively. Solving for v
gives

v ¼ 32�L

��D2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��D4

512�2L2
�P

s
� 1

�
: (1)

From the definition of mass flow Qm ¼ �vA, with A the
effective area of the nanohole, we obtain

Qm ¼ 8��L

�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��R4

32�2L2
�P

s
� 1

�
: (2)

This mass flow equation can be fitted to the data in Fig. 2
(at temperatures above T�) using the radius R as a varying
parameter. The strong dependence of Eq. (2) on the radius
provides a quantitative test of our short-pipe model. In
addition, the extracted radii can be readily compared to
the TEM image taken before the measurements. The tem-
perature and pressure dependence of � and � are known
from the literature [15], and the length L of the short pipe
was determined during the sample fabrication process.
The value of the parameter � ¼ 4:7 was determined in
earlier experiments on viscous gas flow in samples with
very similar geometry [13]. The radii were extracted from
all curves in Fig. 2, and the average radius is found to be
�R ¼ 20 nmwith a standard deviation 2 nm. This value is in
agreement with the radius of 22:8� 0:7 nm extracted from
the TEM picture, giving us confidence in the appropriate-
ness of the model used for the normal flow through the
nanohole.

At temperatures below the � transition, a strong increase
in the mass flow is observed at all pressures. We attribute
this increase in mass flow to the onset of the superfluid
behavior in the nanohole. Indeed, as shown on Fig. 3
(green dotted line), the mass flow Qm predicted by
Eq. (2) using the tabulated total density of liquid helium
and viscosity of the normal component is much smaller
than what is experimentally observed; a superfluid contri-
bution must therefore be included in the modeling of the
flow. As presented in the inset of Fig. 2, this departure of
the observed mass flow from the viscous flow prediction
occurred at slightly lower temperature (T�

�) than the known
superfluid transition (T�). While the exact nature of this
small shift is unknown, it might be due to thermal or
confinement effects in the nanohole. To account for this,
we have used in the last two figures the temperature
difference T � T�

� rather than the absolute tempera-
ture (T) in order to compare more directly with past
experiments.

The two-fluid model proposed by Tisza and Landau for
flow density of He II is a natural starting point to model the
flow when superfluid and normal helium participate in the

mass transport through the nanohole. In this model the total
mass current is Jtotal ¼ �svs þ �nvn, where �s and �n are
densities of superfluid and normal component of He II,
respectively, and � ¼ �s þ �n. We consider the flow to be
only in the axial direction of the nanohole so the total mass
flow is given by Qtotal

m ¼ Jtotal�R
2. The normal part of He

II can be described with the viscous short-pipe flow from
above using the normal helium density in the equation. The
total mass flow is therefore given by

Qtotal
m ¼ �R2�svs þ 8��L

�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��nR

4

32�2L2
�P

s
� 1

�
: (3)

We show in Fig. 3 (solid red line) the second term of
Eq. (3) using the best radius to fit to the He I mass flow. The
rapid drop of this term as temperature decreases indicates
our measured signal is decreasingly caused by viscous
normal flow. The normal component in the He II region
was subtracted from the total flow measured to obtain the
superfluid contribution to the mass flow. From this super-
fluid mass flow we can infer the average superfluid velocity
using the first term on the right-hand side of Eq. (3). We
have repeated this procedure for all data sets and have
obtained the temperature dependence of the superfluid
velocity in the nanohole. The critical velocities in other
experiments are typically reached at pressure heads of
�Oð1Þ Pa so given the larger pressure differences applied
in our study, we assume the superfluid velocity measured
must be critical as well and can be compared as such to
existing data. In the inset of Fig. 4 we compare the super-
fluid velocities at 1.7 K to the critical velocities of many
other experiments (taken from [16]). The open circles are
identified as intrinsic critical velocities, whereas the cross

FIG. 3 (color). Mass flow measured at a pressure of 483 mbar
(solid circle). The green dotted line shows the expected flow if
only normal fluid flow was present (no superfluid component).
The red curve [second term of Eq. (3)] is the viscous flow
contribution in the two-fluid model for short pipe using the
tabulated normal density. The black line is a guide to the eye.
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symbols are dependent on channel size and follow more
closely the Feynman critical velocity model vc¼ @

m4d
lnð da0Þ,

with a0 the size of the vortex core [17]. Our data (red bar)
are consistent with previous results for the intrinsic case.

In previous experiments, it was found that the critical
velocity changes almost linearly with a decrease in tem-
perature, and is well characterized by the equation vc ¼
vc0ð1� T=T0Þ where T0 and vc0 are fitting parameters. In
Fig. 4, the data from Zimmermann et al. [9] are shown and
compared to our normalized data for superfluid velocity.
The parameter vc0 is the critical velocity extrapolation at
T ¼ 0 K and its value is typically of the order of 1 to
25 m=s [9,18]. For the nanohole flow, the extrapolation to
T ¼ 0 K yields values of vc0 from 8 to 45 m=s. The error
on vs becomes larger in the vicinity of T� because of the
uncertainty on the superfluid density. This latter error
prevents us from resolving the behavior of vs very near
T�. Nonetheless, the behavior of the superfluid velocity as
a function of temperature in our nanohole is similar to that
observed in larger channels, albeit the absolute values are
the largest ever measured (to our knowledge) in a channel
flow experiment.

Finally, we comment on the possibilities that are being
opened up by this work. A theoretical model was con-
structed that takes into account the flow of liquid helium
through the short pipe. This experiment demonstrates

de facto that mass flow measurements can be performed
using liquid helium confined at the nanoscale. Our data are
understood in terms of a two-fluid model modified
for the specific geometry of the nanohole short pipe. As
the size of the nanohole is reduced, and the transport
becomes one dimensional, i.e., for D ’ 1 nm and
L=D * 10, we expect new flow properties to emerge.
In this 1D regime, a breakdown of the two-fluid model
is likely to occur, giving way to the physics of
Luttinger liquids which is predicted to form inside the
nanopore [3].
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FIG. 4 (color). Temperature dependence of the normalized
critical velocity. Open triangles (from [9]) are compared to our
results (full symbols) at several pressures. (Inset) Critical veloc-
ity (in m=s) of superfluid helium from experiments in many
different systems [16] as a function of channel size (D), in meter.
The red bar shows the range of superfluid velocities inferred
from the mass flow through the single nanohole. The open circles
are previous results [16] with a temperature-dependent intrinsic
critical velocity, whereas the crosses are temperature-
independent (extrinsic) velocities. The straight line is the
Feynman model of critical velocity.
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