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We demonstrate a position-sensing technique that relies on the inherent sensitivity of chaos, where we

illuminate a subwavelength object with a complex structured radio-frequency field generated using wave

chaos and nonlinear feedback. We operate the system in a quasiperiodic state and analyze changes in the

frequency content of the scalar voltage signal in the feedback loop. This allows us to extract the object’s

position with a one-dimensional resolution of ��=10 000 and a two-dimensional resolution of ��=300,

where � is the shortest wavelength of the illuminating source.
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Diffraction, a property of electromagnetic (EM) waves,
blurs spatial information less than the wavelength � of an
illuminating source and hence limits the resolution of
images. Over the past decade, techniques have been devel-
oped that overcome this diffraction limit using superlenses
made from negative-index media [1,2], superoscillations
[3], and nanostructures with surface plasmons [4,5]. Other
methods use fluorescent molecules that serve as subwave-
length point markers [6–9], where imaging is enabled by
sensing the position of the markers.

In this Letter, we describe a new super-resolution tech-
nique that senses the position of an object by combining
two concepts: nonlinear delayed feedback and wave chaos.
The system uses radio frequency (rf) EM waves in a closed
feedback loop through a wave-chaotic cavity. Self-
oscillation in the feedback occurs when the loop gain
exceeds the loop losses; no rf field is supplied by an
external source. We include a nonlinear element (NLE)
in the feedback loop to create complex (nonperiodic) dy-
namics with multiple independently stable frequencies.
The resulting EM oscillations provide the illumination
source for our position sensor.

Our work extends the Larsen effect, a phenomenon
where positive audio feedback between a microphone
and audio amplifier results in periodic acoustic oscilla-
tions. The frequency of oscillation, known as the Larsen
frequency, is highly dependent on the propagation paths of
the acoustic wave. A perturbation to these propagation
paths shifts the Larsen frequency [10]. In addition, periodic
oscillators with time-delayed feedback show extremely
narrow and stable frequency spectra [11–14]. For our
super-resolution position-sensing system, we exploit the
sensitivity of quasiperiodic EM frequencies.

In our experimental system, the NLE is an input-output
circuit based on the design from Ref. [15]. We use an alumi-
num two-dimensional (2D) quarter-stadium-shaped rf cavity
as a well-known wave-chaotic scattering scene [16,17]. As
shown in Fig. 1(a), the EM field emanating from the cavity is
fed into a nonlinear circuit through a broadband (20 MHz–
2 GHz) receiving (RX) antenna. The output of the circuit is

fed back into the cavity through an identical transmitting
(TX) antenna, creating a closed feedback loop. Inside the
cavity is a subwavelength dielectric object.
The complex field inside of the cavity interacts multiple

times with the object due to reflections from the cavity’s
walls [illustrated by a complex ray path in Fig. 1(a)] and
from many passes of the rf signal through the nonlinear
feedback loop. Because of these multiple interactions,
small changes in the cavity alter the phase and amplitude
of the field, affecting the spatial structure of the modes for a
given frequency [10]. These changes alter the dynamical
state of the system. The output of the nonlinear circuit is
filtered such that its maximum frequency is 2 GHz, and
thus the rf signal has � � 15 cm.
The NLE in the EM feedback loop induces quasiperi-

odic oscillations with multiple incommensurate frequen-
cies in the output voltage Vout of the nonlinear circuit.
As the object moves inside the cavity, the frequencies of
the quasiperiodic oscillations shift independently and pro-
vide a unique fingerprint of the object’s location in 2D.
Thus, we map the position of the object in both the x and
y directions by monitoring changes of a single scalar
voltage Vout.
Before describing our results, we first characterize our

wave-chaotic cavity using its pulse response. Shown in
Fig. 1(b), our cavity produces a complicated pulse response
(typical of wave-chaotic systems) with a quality factor
Q ¼ 174 at a frequency of 1.77 GHz (the most prominent
frequency in the quasiperiodic oscillations). As a result,
broadcasting a continuous-wave signal into this cavity
forms a complex interference pattern for each contained
frequency. Generic cavities tend to display such wave
chaos; only cavities with a high degree of symmetry dis-
play nonchaotic ray trajectories [18,19].
The pulse response of a wave-chaotic environment has

been exploited to sense the appearance of an object in a
scattering medium [20] or the location of a perturbation on
the surface of a scattering medium [21]. These techniques
rely on measuring changes to the pulse response and have
demonstrated a spatial sensitivity of ��. Our own work is
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inspired by these achievements, where we use a
continuous-time nonlinear feedback loop to achieve deep
subwavelength position resolution.

Conventional oscillators using time-delayed nonlinear
feedback use a nonlinear element whose output is ampli-
fied and coupled back to the input through a single feed-
back loop that delays the signal by a fixed amount. Because
of the delayed feedback, these systems can display a
variety of behaviors including periodic oscillations, quasi-
periodicity, and chaos. Oscillators using time-delayed
feedback have been designed using high-speed commercial
electronics or lasers to generate complex signals
with frequency bandwidths that stretch across several giga-
hertz [22–24].

Thus, the system shown in Fig. 1(a) combines the stabil-
ity and sensitivity of a dynamical state from a high-speed

nonlinear-feedback oscillator with the sensitivity and long
propagation times of the EM field in a wave-chaotic cavity.
The time delays of the feedback in this system are the
propagation times for the EM energy to transmit through
the cavity, rather than a single time delay.
The values of the delays and their respective gains form

a continuous delay distribution (proportional to the cavity’s
pulse response) that is uniquely defined for each position of
the enclosed object. This is known as a distributed-delay
system, where the reflections of EM energy are the delay
distribution. The pulse response in Fig. 1(b) demonstrates
that the cavity stores EM energy for longer than 100 ns,
where typical time scales of oscillations are less than 1 ns.
As the time delay in feedback oscillators increases, the
phase noise of oscillation frequencies decreases [12]. Thus,
the system dynamics are stable for static configurations
while also highly sensitive to changes in the cavity.
Measuring the scalar variable Vout, we monitor dynamical
changes in the system and sense the object’s movements.
We expect that this technique would be more or less
general for all object positions in the cavity because of
the ergodicity of ray trajectories.
We first demonstrate this idea qualitatively along a one-

dimensional (1D) object path. We fix Vbias in the NLE to
exhibit periodicity at x ¼ 0 mm and measure the time
evolution in Vout for object positions x ¼ 0 mm–12 mm
in 10 �m steps. The system changes between periodicity
(P) from x ¼ 0 mm–1:4 mm, quasiperiodicity (QP) from
x ¼ 1:4 mm–8 mm, and two different time-evolving
chaotic states (C1 and C2) from x ¼ 8 mm–9:8 mm and
x ¼ 9:8 mm–12 mm, respectively. Chaotic state C1 con-
tains chaoticlike breathers and C2 exhibits a relatively flat
bandwidth from 20 MHz—2 GHz.
The observed dynamical changes fall into one of two

categories: an abrupt change in the dynamical state (known
as a bifurcation) or small shifts in the frequency compo-
nents and amplitudes of Vout. A bifurcation diagram illus-
trates the qualitative dynamical changes in Fig. 2. Our
results show dynamical changes from subwavelength
movements of a subwavelength object.
To go beyond the qualitative detection of movement, we

tune Vbias so that Vout is in a quasiperiodic state (QP in
Fig. 2) for all object positions of interest. The incommen-
surate frequencies of a QP state are not phase locked and
hence can shift independently with respect to object trans-
lations. In addition, incommensurate frequencies help
eliminate interference nodes (blind spots) of the illuminat-
ing EM waves in the cavity, where each frequency has a
complex interference pattern that covers the blind spots of
another. An example time series and frequency spectra for
a fixed object position are seen in Figs. 3(a) and 3(b),
respectively.
From Fig. 3, it is seen that the behavior of the voltage

detected at the RX antenna is quasiperiodic, not chaotic in
time. On the other hand, the shape of the cavity and the

FIG. 1. (a) Experimental setup. Nonlinear circuit consisting of
a transistor-based (BFG620) NLE, low-noise amplifiers (LNA,
Mini-Circuits ZX60-4016E and Picosecond Pulse Labs 5828-
108), and a low-pass filter. A bias voltage Vbias tunes the
nonlinearity. The NLE is housed in a shielded aluminum box,
but otherwise there is no active stabilization to control the
thermal or vibrational effects of the environment. The output
voltage Vout is measured with a 8-GHz-analog-bandwidth
40-GS=s oscilloscope (Agilent DSO80804B). Feedback passes
through a cavity with a dielectric object (2 cm� 4 cm water-
filled container) that is positioned in 2D using Thorlabs
(LTS150) and Zaber Technologies (TLSR150B) translation
stages. (b) Cavity pulse response. Here, the nonlinear circuit is
removed to examine just the linear response of the cavity and
antennas. We inject a 0.1 ns EM pulse of amplitude 1.5 V into the
TX antenna and measure at the RX antenna. The time at which
the radiation arrives at the RX antenna is a measure of the path
length of EM energy through the cavity.
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presence of internal scatterers (object and antennas) create
a complex EM field known as spatial wave chaos, even
though the temporal behavior is quasiperiodic. The paths
of rays in the cavity are highly sensitive to small changes, a
hallmark of ray chaos, and this sensitivity in turn impacts
the temporal dynamics of the oscillator.

Tracking the object entails measuring shifts in the QP
frequency components. In Fig. 3(b), we highlight two
peaks in the spectrum at frequencies denoted by f1 and
f2. The frequency harmonics at (f2 � f1) and (f2 þ f1)
are used to improve the signal-to-noise ratio (SNR) of
these frequencies. Averaging independent measures of f1
and f2 reduces statistical errors and increases their SNR.
To follow changes in the frequencies of Vout with high
precision, we use a nonlinear least-squares-fit to a model
for a four-tone QP signal [11], resulting in a 2.4 kHz
frequency resolution (approximately 0.5% of the total ob-
served experimental frequency shifts).

To demonstrate 1D position sensing, we translate the
object along the path x ¼ 0 mm–5 mm while y ¼
2:5 mm. We then translate the object along an orthogonal
path y ¼ 0–5 mm while x ¼ 2:5 mm. Shown in Figs. 4(a)
and 4(b), the measured frequency shifts �f1 and �f2 are
plotted for 1D paths along the orthogonal x and y direc-
tions, respectively. We separately fit �f1 and �f2 in the x
and y directions with second order polynomials

a1�f1ðxÞ þ a2�f2ðxÞ ¼ c0 þ c1xþ c2x
2; (1)

b1�f1ðyÞ þ b2�f2ðyÞ ¼ d0 þ d1yþ d2y
2: (2)

We optimize the coefficients ai and ci (bi and di) using a
nonlinear least-squares-fit to a model for the object posi-
tion. The root-mean-square (rms) error for the frequency
shift map is 1.45 kHz (0.86 kHz) along x (y). By inverting
these maps, we calculate the measured object positions.
The rms error between the actual and measured positions is
9:2 �m (23:7 �m) for x (y), which demonstrates a

FIG. 2. Bifurcation Diagram. We store and analyze the time
series of Vout at each object position along a 1D path in the x
direction. The local maxima of each time series is plotted as a
function of object position x.

FIG. 3. (a) Temporal evolution of a typical quasiperiodic state
used for position sensing. (b) Logarithmic power spectral density
(PSD) of this signal.

FIG. 4. Frequency shifts �f1 and �f2 of the QP state as the
object translates along the (a) x direction, where the fit from
Eq. (1) yields a1 ¼ 2:8 mm=kHz, a2 ¼ �8:7 mm=kHz, c0 ¼
27; 113:0 mm, c1 ¼ �439:2 and c2 ¼ 1:5 mm�1, and (b) along
the y direction, where the fit from Eq. (2) yields b1 ¼
0:8 mm=kHz, b2 ¼ �0:5 mm=kHz, d0 ¼ �73 452:0 mm, d1 ¼
242:0, and d2 ¼ �2:0 mm�1. (c) Frequency shifts �f1ðx; yÞ and
�f2ðx; yÞ for object translations (x, y) in a 5 mm� 5 mm
grid of positions. The planar fits from Eqs. (3) and (4) yield
�1 ¼ �84:68 kHz=mm, �2 ¼ �15:20 kHz=mm, �1 ¼
�56:74 kHz=mm, �2 ¼ �14:75 kHz=mm, �1 ¼ 11:72 MHz
and �2 ¼ 2:43 MHz. The measured determinant j�1�2 �
�2�1j ¼ 386 kHz2=mm2 with an error of 5:8 kHz2=mm2.
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resolution of ��=10 000 along orthogonal 1D directions
(recall � � 15 cm).

Tracking the object’s position in both the x and y direc-
tions simultaneously requires two independently changing
observables. In our system, we observe a single scalar
variable Vout that oscillates with primary frequencies f1
and f2. We fit the frequency shifts �f1ðx; yÞ and �f2ðx; yÞ
for object positions (x, y) in a 5 mm� 5 mm area
[Fig. 4(c)] and approximate them as planes

�f1ðx; yÞ ¼ �1xþ �1yþ �1; (3)

�f2ðx; yÞ ¼ �2xþ �2yþ �2: (4)

Using Cramer’s rule, we show that j�1�2 � �2�1j � 0 to
verify the planes are linearly independent in this area and
allow us to simultaneously measure x and y coordinates.

In the 1D case, we have the freedom to optimize the
fitting parameters in Eqs. (1) and (2) for x and y separately.
In the 2D case, all of the fitting parameters �i, �i, and �i in
Eqs. (3) and (4) are present in the solutions for both x and y.
Thus, we cannot optimize the fits in the x and y directions
separately and instead use the fitted planes for our fre-
quency maps.

This constraint, combined with the approximation that
these surfaces are planar, limits our 2D resolution. A planar
fit of �f1ðx; yÞ (�f2ðx; yÞ) gives a rms frequency error of
4.17 kHz (7.26 kHz) and a rms position error of 370 �m
(650 �m) for x (y), yielding a 2D resolution of ��=300.
Higher order fits do not improve the resolution due to noise
in our measurements. This 2D frequency mapping serves
as the calibration for objects of this shape and must be
reacquired for different shaped objects.

For comparison, a scanning near-field microwave micro-
scope uses rf frequency shifts to achieve subwavelength
sensitivity (� �=750 000) of near planar surfaces [25]. In
contrast, our system uses nonlinear feedback to internally
generate multiple independent frequencies and measures
multiple degrees of freedom using a single scalar variable.
Moreover, it uses a stationary pair of antennas to extract 2D
spatial information of a 3D object, making it free of
mechanically moving parts.

We conjecture that our method can be implemented
using EM waves in the visible part of the spectrum.
Semiconductor lasers with time-delayed optical feedback
are known to display complex dynamical behaviors in
which the output intensity varies in time, including quasi-
periodicity [26–28]. Furthermore, optical wave chaos has
been demonstrated using optical cavities [19,29,30]. We
envision a completely optical version of our technique
where a laser receives feedback from a wave-chaotic opti-
cal cavity. Such a system will be capable of tracking an
object on a subnanometer scale.

Understanding the full potential of this method will
require studies in both wave chaos and nonlinear dynam-
ics. Our results suggest that one can position sense in 3D

using a QP state with three independent frequencies. This
type of dynamical state is possible in our system but
requires further study to create a QP state for a 3D volume
of interest. More independent observables could also be
introduced into the system using two or more feedback
loops external to the cavity, where each loop is indepen-
dently band limited to prevent cross talk.
In the future, we see several options to improve the

system’s resolution. Currently, resolution limitations are
based on the SNR of Vout as well as the long-term drift of
the system. Increasing the number of frequency harmonics
through nonlinear mixing gives additional measures of the
independent modes and improves the system’s SNR. Also,
the cavity Q is proportional to the number of interactions
between the subwavelength object and the EM energy
inside of the cavity, and thus the resolution of this tech-
nique should scale with Q. We are exploring methods to
generalize our technique to multiple objects.
We believe that our system will have applications be-

yond just position sensing. For example, the scattering and
absorption of a subwavelength object strongly depend on
its geometry and surroundings, and our approach, which is
sensitive to the shape and orientation of the scatterer, can
quantitatively track these properties. Also, similar to [10],
analyzing dynamical states can monitor changes in the EM
properties of materials in the cavity.
To the best of our knowledge, our approach is the first to

measure multiple spatial degrees of freedom on a subwa-
velength scale using a single scalar signal. Using a QP
analog of the Larsen effect, we combine a nonlinear feed-
back oscillator with multiple EM reflections in a scattering
environment to exploit the inherent sensitivity of wave
chaos, adding an alternative to the short list of super-
resolution techniques.
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[17] H. J. Stöckmann and J. Stein, Phys. Rev. Lett. 64, 2215
(1990).
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