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Universal relationships between the medium excitability and the angular velocity and the core radius of

rigidly rotating spiral waves in excitable media are derived for situations where the wave front is a trigger

wave and the wave back is a phase wave. Two universal limits restricting the region of existence of spiral

waves in the parameter space are demonstrated. The predictions of the free-boundary approach are in good

quantitative agreement with results from numerical reaction-diffusion simulations performed on the

Kessler-Levine model.
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Rotating spiral waves in excitable media determine the
spatiotemporal dynamics in many physical, chemical and
biological systems. They are found, for example, in the
tachycardia and fibrillation of the heart, in catalytic surface
reactions, in concentration waves of the Belousov-
Zhabotinsky reaction, and in dynamics of cell aggregation
[1–3]. The angular velocity and the spiral wave shape are
uniquely determined by the parameters of the local kinetics
and the diffusive coupling within the medium. An under-
standing of this selection principle can be applied, for
instance, for screening of antiarrhythmic drugs and devel-
opment of innovative diagnostic and therapeutic strategies.

An excitation wave is induced by a diffusive flux at a
wave front triggering the medium from the resting state to
an excited one. Under certain conditions the inverse tran-
sition toward the resting state is also triggered by a diffu-
sive flux at the wave back [4]. Such a wave is called a
trigger-trigger (TT) wave. In many systems, no TT waves
are observed but instead trigger-phase (TP) waves, where
the medium returns to the resting state when the intrinsic,
local kinetics reaches a specific end point and the diffusive
flux is not so crucial. Both types of waves are equally
important for applications.

For TT waves a free-boundary approach has been suc-
cessfully applied to analyze formation of spiral waves and
other wave patterns in excitable media [5–9]. This ap-
proach is based on an eikonal equation for the normal
velocity of the excited domain boundary

cn ¼ cp �Dk; (1)

where cp is the velocity of a plane boundary, k is the

boundary curvature and D is the diffusion coefficient.
For TP waves the normal velocity of the wave back is not

determined by Eq. (1) and till now spiral wave selection in
excitable media with TP waves remains unsolved.

In this Letter we derive universal relationships between
the medium excitability and the selected angular velocity
and the core radius of rigidly rotating spiral waves in
excitable media supporting TP waves.

Our analysis is based on a modified free-boundary
approach, which can be applied for excitable medium
models of different forms. As an example the Kessler-
Levine (KL) model is used, which was originally aimed
to simulate spiral dynamics during the cell aggregation in
Dictyostelium discoideum [10,11]. The aggregation is con-
trolled by chemical signaling molecules cAMP diffusing
through the intercellular space. The KL model describes
the spatiotemporal variations of the cAMP concentration,
u, by the two-component reaction-diffusion system

@u

@t
¼ Dr2uþ Fðu; vÞ; (2)

@v

@t
¼ Gðu; vÞ; (3)

with a specific kinetic term

Fðu; vÞ ¼ ��uþ AHðu� aÞ½1�Hðv� �Þ�; (4)

where H is the Heaviside function. This kinetic function
assumes that, when the cAMP concentration near a cell
exceeds a threshold a, the cell becomes excited and emits a
fixed amount of the cAMP during a time interval � with a
constant intensity A. The coefficient � specifies the degra-
dation rate of cAMP within the extracellular space.
The value v in Eq. (4) has a physical meaning of a time

counted from the last excitation. Hence, v is equal to zero
in the resting state and starts to grow at the unit rate just
after an excitation. At the instant when v reaches the
relative refractory time, �rr, its value has to be reset to
zero. In numerical computations the growth of v can be
formally described by Eq. (3) with

Gðu; vÞ ¼ HðvÞ (5)

and v has to be set to a small positive value vmin � �when
u ¼ a and du=dt > 0 and reset to zero when it reaches �rr.
During the time interval between the absolute refractory

period, �ar, and the relative refractory period, �rr, the
excitation threshold a, which determines the planar veloc-
ity cp, is specified by
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a ¼ amax � �ðv� �arÞ=v; (6)

where � ¼ ðamax � aminÞ�rr=ð�rr � �arÞ. Here amax and
amin specify the threshold value during the absolute refrac-
tory period and in the resting state, respectively.

In one-dimensional simulations a propagating wave con-
sists of a trigger front and a wave back following the front
after the fixed time interval �. Obviously, it is a TP wave
with the back velocity predetermined by the front motion.
It is shown below, that this property strongly affect dynam-
ics of two-dimensional spiral waves.

The main assumption of the free-boundary approach is
that the front and the back of a propagating wave are thin in
comparison to the wave plateau and, hence, the spiral wave
dynamics is completely determined by the motion of the
excited domain boundary, e.g., the curve uðx; y; tÞ ¼ a.
The normal velocity of the boundary is positive at the
wave front, is negative at the wave back and vanishes at
their common point q, so-called phase change point [12].
In the case of a rigidly rotating spiral, the normal boundary
velocity cn, the tangential one c� and the curvature k obey
pure kinematic equations [9]

dcn
ds

¼ !þ kc�; (7)

dc�
ds

¼ �kcn; (8)

where s is the arc length counted from the point q and ! is
the angular velocity.

If the relative refractoriness is shorter than the rotation
period, the front velocity of a spiral wave induced in the
KL model is simply proportional to the boundary curvature
according to Eq. (1), where cp ¼ cpðaminÞ ¼ const in this

case due to Eq. (6). Then the spiral wave front is specified
by a solution of the system (1), (7), and (8) starting at the
phase change point with the initial conditions

cnð0Þ ¼ 0; c�ð0Þ ¼ ct (9)

and approaching asymptotically for s ! 1 the values

cnð1Þ ¼ cp; c�ð1Þ ¼ �1: (10)

For a given value of the tangential velocity of the phase
change point 0< ct < cp Eqs. (1) and (7)–(10) determine a

nonlinear boundary value problem. The solution of this
problem specifies the single possible value of the angular
velocity ! and the corresponding functions cnðsÞ, c�ðsÞ,
and kðsÞ [9]. The last function determines the selected
shape of the spiral wave front in Cartesian coordinates by
the following system of equations:

d�=ds¼�k; dx=ds¼ sinð�Þ; dy=ds¼ cosð�Þ;
(11)

where angle �ðsÞ specifies the normal direction.

As an example, the spiral front obtained numerically
for cp ¼ 2, ct ¼ 0:8, D ¼ 1 and for the selected value

! ¼ 0:552 is shown in Fig. 1 (thick solid). The spiral
core radius is naturally determined as rq ¼ ct=!.

It is important to stress, that the eikonal Eq. (1) remains
to be valid also for the wave back within a region near the
phase change point, where v < �. Taken this into account
one can use the system (1), (7), (8), and (11) with the
selected value of ! to specify the shape of the wave back
even for s < 0 as shown by the thin solid in Fig. 1. On the
other hand, it is clear, that far away from the phase change
point the wave back should simply follow the wave front.
Thus, the shape of the back should be identical to the front
shape, but has to be turned around the rotation center by the
angle � ¼ !�, as shown by dashed line in Fig. 1. The
angle� is chosen here in such a way, that a part of the wave
back obeying the eikonal Eq. (1) is smoothly connected to
the asymptotically established phase wave. Namely this
smoothness condition determines the selected back shape
and the value of �.
In order to generalize the obtained selection principle, it

is suitable to use the values cp and D to rescale velocities,

e.g. Ct ¼ ct=cp, and space variables, e.g., S ¼ cps=D,

X ¼ cpx=D, Y ¼ cpy=D. Two important parameters ap-

pear after this rescaling. The first one is the dimensionless
angular velocity

� ¼ !D

c2p
: (12)

The second one is the dimensionless parameter, which
specifies the medium excitability [5,7–9]

B ¼ 2D

duc
2
p

; (13)

FIG. 1. The selected shape of a spiral wave rigidly rotating at
! ¼ 0:552 obtained as a solution of the free-boundary problem
(1) and (7)–(11) for cp ¼ 2:0, ct ¼ 0:8, D ¼ 1, and � ¼ 0:943.
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where du is the duration of a propagating pulse. Note that
du � �, if the excited domain boundary is thin.

The values of � selected as the solution of the free-
boundary problem (1) and (7)–(11) are shown in Fig. 2(a)
as a function of the parameter B, which is inversely pro-
portional to � due to Eq. (13). The selected value of the
tangential velocity CtðBÞ is also presented in Fig. 2(b).

At B ¼ Bmin the spiral core radius vanishes, � ¼ � and
the angular velocity approaches the value � ¼ 0:331,
which was first found for the screw dislocation growing
on a crystal surface [13]. Obviously, in this case � ¼ �m �
ðD=c2pÞ�=0:331 and Bmin ¼ 2D=ð�mc2pÞ ¼ 0:662=� �
0:211. This limit is practically identical to one found for
the case of TT waves [9].

At B ¼ Bcp the angular velocity vanishes and spiral

wave is transformed to, so-called, critical finger with
known analytical solution for the wave front [5]. Then
Bcp ¼ 2= ln½ð1� cos�cpÞ=ð1þ cos�cpÞ� � 0:977, where

normal angle at the matching point �cp � 3:83 is a solu-

tion of the equation tan�cp=2þ 1= tan�cp=2þ � ¼ 0.

Note, that for TT waves a similar transformation occurs
at a quite different value Bc ¼ 0:535 [5,7–9], as shown in

Fig. 2. However, in a close vicinity of Bcp an asymptotics

� ¼ 0:204ðBcp � BÞ3=2 is valid with the power low found

earlier [14].
In order to verify the selected relationships, direct nu-

merical integrations of the KLmodel have been performed.
To avoid the influence of the medium refractoriness, the
values of �ar and �rr have been chosen to be smaller than
the rotation period. Moreover, if the rotation period is too
short, the variable u does not have enough time to return
back to the resting state, that should affect the velocity of
the following front. To prevent this undesirable influence,
the computations corresponding to short periods and small
core radii have been performed on a helical surface instead
of a plane. The explicit Euler method has been used with
the space step �x ¼ 0:04 and the time step �t ¼ 0:0002.
For a plane the grid size was (500� 500) nodes. To
simulate a helical surface a set of such grids centered at
the origin and numbered by index i was used. The nodes
of the grid i, located directly to the right of the radial line
x ¼ 0, y > 0, have been connected to the nodes laying
directly to the left of this line of the grid iþ 1 rather
than of the grid i. That enables a front of a counterrotating
spiral wave to move always through the resting state pass-
ing from one grid to the next.
To systematize the simulation data, note that a dimen-

sionless form of the KL model contains only two control
parameters a0 ¼ amin�=A and �0 ¼ ��. Taking this into
account, the parameters D ¼ 1, A ¼ 3, and � ¼ 8 have
been fixed, and � and amin have been varied.
In Fig. 2 results of our simulations are shown by three

different lines corresponding to a fixed value of the pa-
rameter amin and varying parameter �. The angular velocity
is determined from two-dimensional simulations and the
propagation velocity is measured in one-dimensional com-
putations. It can be seen, that all data obtained in the
reaction-diffusion computations reproduce qualitatively
the predictions of the free-boundary approach and provide
rather good quantitative agreement, e.g., for a0 ¼ 0:27.
Deviations increase if a0 approaches 0.5 or vanishes. One
reason for the observed deviations is a finite thickness of
the excited domain boundary neglected by the free-
boundary approach. The predicted tangential velocity of
the phase change point is also in quantitative agreement
with the reaction-diffusion simulations as can be seen in
Fig. 2(b). Hence the core radius and the spiral shape are
correctly predicted by the free-boundary approach pre-
sented here.
It is important to stress that the relations�ðBÞ and CtðBÞ

obtained above for short refractoriness can be used to
consider the medium with an arbitrary refractoriness �rr.
For the KL model it can be done relatively easy, since for a
spiral wave rigidly rotating on a plane the value of the
variable v ¼ T � 2�=! is the same along the whole wave
front. The plane wave velocity in Eq. (1) should be speci-
fied by the dispersion relation cpð!Þ. The slope of the

(b)

(a)

FIG. 2. The selected values of the dimensionless angular
velocity � (a) and the tangential velocity Ct (b) obtained
from numerical solutions of the free-boundary problem (1) and
(7)–(11) as functions of the dimensionless parameter B (solid
lines). The results of direct integration of the KL model obtained
for varying � with different threshold values are depicted as
dotted lines for a0 ¼ 0:37, dashed lines for a0 ¼ 0:27 and
dashed-dotted lines for a0 ¼ 0:107. Thick dotted lines show
similar dependences found for TT waves in [9].
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eikonal equation, generally speaking, also can depend on
the wave period T [15], but for the KL model it remains
equal to D. Hence, only the relation cpð!Þ should be

substituted into Eqs. (12) and (13), to derive a generalized
dispersion relation �TðBÞ, and then to solve the equation
�ðBÞ ¼ �TðBÞ [9]. The graphical solution of this equation
is illustrated in Fig. 3.

Let denote as B� and �� the selected values at the
intersection points and the corresponding plane velocity
as c�p. The selected tangential velocity is determined as

C�
t ¼ CtðB�Þ. In addition B0 and c0 will specify the values

of B and cp for ! ¼ 0. Then the predicted rotation fre-

quency �r and the tangential velocity Ctr for the given
excitability B ¼ B0 are expressed as

�r ¼ ðc�p=c0Þ2��; Ctr ¼ ðc�p=c0Þ2C�
t : (14)

The relationships obtained by use of this procedure for
the KL model are shown in Fig. 4. It can be seen that for
B> 0:6 the refractoriness plays no role, but for smaller B
refractoriness reduces the angular velocity� and increases
the tangential velocity Ct. These data are in a good quanti-
tative agreement with the results of direct reaction-
diffusion simulations also shown in Fig. 4.

In summary, the proposed free-boundary approach al-
lows us to discover a selection principle for rigidly rotating
spiral in a broad class of excitable media with a phase wave
at the wave back. The main result of this consideration is
the dimensionless angular velocity� specified as a mono-
tonically decreasing function of a single dimensionless
parameter B characterizing the medium excitability.

The KL model provides probably the simplest way to
reproduce TP waves in the reaction-diffusion system. By
use of this model it is rather easy to separate two factors,
which are equally important in the spiral wave selection,
i.e., the medium excitability and the refractoriness. By
exploiting this separation and by use of a helical surface
instead of a plane it was possible in this Letter to study the

whole parameter region Bmin <B< Bcp first neglecting

refractoriness and then taking it into account.
The proposed free-boundary approach opens perspec-

tives to analyze TP spiral waves in different kind of models
with a more complicated controller dynamics. The corre-
sponding study is important for such application as chemi-
cal or cardiac excitable media. However, it goes beyond the
aim of this Letter.
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