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Transverse Alignment of Fibers in a Periodically Sheared Suspension: An Absorbing Phase
Transition with a Slowly Varying Control Parameter
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Shearing solutions of fibers or polymers tends to align fiber or polymers in the flow direction. Here,
non-Brownian rods subjected to oscillatory shear align perpendicular to the flow while the system
undergoes a nonequilibrium absorbing phase transition. The slow alignment of the fibers can drive the
system through the critical point and thus promote the transition to an absorbing state. This picture is
confirmed by a universal scaling relation that collapses the data with critical exponents that are consistent

with conserved directed percolation.
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When a fiber suspension is subjected to steady shear flow,
the fibers generally align in the flow direction [1,2]. This
alignment of fibers is most dramatic for semidilute and
more concentrated suspensions of stiff fibers, but occurs
for flexible fibers as well [3], including polymer solutions
and melts at moderate to high shear rates [4]. Controlling
fiber alignment is important for the manufacture of paper,
high-strength polymers, reinforced rubbers, and other ma-
terials [5,6]. Alignment, whether local or global, has been
well documented in nematic liquid crystals [7], vibrated
granular rods [8,9], and elongated colloids [10].

In this Letter, we show that when a suspension of
neutrally buoyant non-Brownian fibers is subjected to os-
cillatory shear strain, the fibers can align perpendicular to
the flow. This alignment occurs over a finite range of strain
amplitudes and is governed by a subtle interplay between
fiber orientation and short-range interactions through an
athermal (nonequilibrium) process known as random or-
ganization [11,12]. At low strain amplitudes, we find that
random organization, which proceeds through collision-
induced fluctuations, occurs without significant alignment
of fibers. By contrast, as the critical strain amplitude is
increased, collision-induced fluctuations cause the fibers to
align. In both cases, the system ultimately reaches a steady
state in which fluctuations cease, provided the strain am-
plitude vy is below some critical value .. For y > v, the
system fluctuates about a steady state and the alignment of
fibers is diminished. The transition between the nonfluctu-
ating and fluctuating steady states belongs to a broad class
of nonequilibrium phase transitions called absorbing phase
transitions that have been linked to directed percolation
[13-15]. The key (and unique) point here is that fiber
orientation acts to produce a time-dependent control pa-
rameter that can drive the system through the critical point
of an absorbing phase transition. This leads to unusual
behavior in which the nonequilibrium critical phase tran-
sition of the system is delayed as the system hovers near
criticality over a range of strain amplitudes.
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Originally developed to understand sheared suspensions
[11], random organization has also been used as a frame-
work to understand periodically driven vortices in super-
conductors [16] and the phenomenon of plastic depinning
[17]. The basic mechanism is most simply understood for a
non-Brownian suspension of spheres. A suspension is sub-
jected to periodic shearing, which initially causes nearby
particles to collide. However, as periodic straining contin-
ues, these collisions drive the suspension towards a con-
figuration in which all particles avoid each other. When
they do, each particle simply retraces a reversible trajec-
tory, returning to the same position after each cycle such
that the periodically sampled configuration does not
change with time. Above the threshold, a finite fraction
of the objects continues to collide and fluctuate. By using
fibers, we introduce orientational degrees of freedom in
addition to the translational degrees of freedom present for
the case of spheres. It is this additional degree of freedom
that leads to a time-dependent control parameter and the
unusual critical behavior it produces.

Our samples are nylon fibers of length [ = 1.52 =
0.14 mm and diameter d = 0.140 = 0.001 mm (//d =
11) dispersed in a Newtonian liquid of viscosity 1 Pas.
The liquid is an aqueous solution of triton X-100, a non-
ionic surfactant, and ZnCl, [18]. The concentrations are
adjusted to match the fiber density and refractive index,
thus avoiding sedimentation and rendering the suspension
transparent. About 1% of the fibers are dyed with
Rhodamine 6G so that their centers and orientations can
be tracked. The fiber volume fraction c is varied from 0.05
to 0.20 in steps of 0.05, all above the overlap threshold
c* = %(d/ [)> = 0.013 and below the isotropic-to-nematic
concentration ¢; = 3.34(d/I) = 0.32 [10].

Suspensions are placed between concentric cylinders of
a transparent Couette cell thermostated at 22 °C, as shown
in Fig. 1. The inner cylinder, driven by a rheometer head, is
rotated back and forth through an angle ¢ to produce an
oscillatory time-dependent strain 7y sinw¢ with frequency
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FIG. 1 (color). Upper row. Fluorescing fibers can be seen
throughout the thickness of the gap: x-z images of the suspension
(a) before and (b) after a run at y = 2.60 with ¢ = 0.15. (c) Top
view of the gap. Bottom row. Left: Experimental setup: the
shaded orange area shows the 1 cm? region that is imaged in
the x-z plane. Right: x-y-z coordinate system, chosen to corre-
spond to the flow, velocity gradient, and vorticity directions,
respectively. Three Jeffery orbits are shown in different colors,
with the corresponding rod shown in green only for the red orbit.
The angles 6 and ¢ are the polar and azimuthal angles, respec-
tively, of the rod. The orientation of the fiber projected onto the
x-z plane is «, as shown.

o and strain amplitude y = R/g, where R = 25 mm is
the radius of the inner cylinder and ¢ = 2.2 mm the gap
between cylinders.

Samples are sheared at a high oscillatory strain for 30
minutes (y = 10, @ = 3 rads™! and Reynolds number
Re = 0.15) to suppress sample history and ensure good
mixing. After a 1 min rest, a measurement begins by
subjecting the suspension to an oscillatory strain of ampli-
tude y and constant frequency, typically 0.04 Hz, while
keeping Re = wyg?p/m = 1073 to assure that inertial
effects are unimportant.

A section of the Couette cell is illuminated with a sheet
of green 532 nm laser light, which excites the dyed fibers.
The central section of the illuminated volume is viewed
with a digital camera, as shown in Fig. 1. Images, consist-
ing of x-z projections of the dyed fibers, are recorded with a
digital CCD camera once per cycle in synchronization with
the oscillatory shear strain. By fitting the imaged particles
with ellipses, their centers of mass and orientation are
tracked through time [19].

Isolated fibers subjected to oscillatory shear flow at low
Re trace out reversible trajectories [20], which are small
sections ( =< 5%) of their Jeffery orbits [21]. When viewed
stroboscopically, fibers executing reversible trajectories
appear as stationary objects with fixed positions and

orientations. For a given cycle, we observe that some
fraction of fibers execute reversible trajectories, while the
remaining fraction collide with one another and thus are
displaced from their previous positions and orientations.
We refer to this irreversible motion as activity, and char-
acterize it quantitatively by the active fraction f,, consis-
tent with terminology used for absorbing phase transitions
[13—-15]. The activity is quantitatively measured by the
single-cycle translational and orientational mean square
particle displacements. We measure the x-z projections of
these quantities, which we write as (Ar}) and (Aa}),
respectively, and which are proportional to f,.

As in previous reports [11,22], we find that the activity
has a rheological signature. The complex viscosity 1" =
n' + in” of a non-Brownian suspension in a Newtonian
fluid has an elastic component 7’ that depends on the
activity [11]. Simultaneous measurements of 1" and f,
shows that 5" « f,. We quantify the activity with 5"
because it has a significantly greater signal-to-noise ratio
than (Ar?) and (Aa?). Measurements of 7’ average over
the entire sample, or more than 10° particles, while mea-
surements of (Ar7) and (Aa?) average over the dyed
particles in a frame, or about 102 particles.

Our results for different fiber concentrations are quali-
tatively similar, with strain thresholds roughly inversely
proportional to the volume fraction. We present here the
results of ¢ = 0.20, which illustrate all the phenomena.

Upon commencement of oscillatory strain, the activity,
as measured by 1’ decays and vanishes in ~10? or fewer
cycles for y <2.2, as shown in Fig. 2. For y > 2.8, the
activity initially decays but ultimately settles to a finite
steady state value; the system remains irreversible.
Between these values, the behavior is more complex, but
an absorbing (reversible) state is eventually achieved
where all activity ceases. For these larger strains, the
orientation of the fibers evolves globally and gradually
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FIG. 2 (color). Rheological data showing decay of activity as
measured by 1" for different strain amplitudes, as indicated in
the legend.
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with time such that the suspension ends in a nematic state,
with the fibers aligned in the vorticity (z) direction. Images
of the suspension, presented in Fig. 1, allow quantitative
measurement of the distribution of angles « and ¢, in the
vertical (x-z) and horizontal (x-y) planes, respectively. We
quantify the mean fiber orientation with two order parame-
ters: S, =1 —2(cos’a) and S, =1 — 2(cos’¢). While
nematic ordering is observed, as discussed below, there are
no long range translational correlations.

We find that S = —0.66 = 0.15 remains constant in-
dependent of time and strain amplitude, which corresponds
to fibers pointing on average about 24° £ 6° from the flow
direction, as observed in the x-y place. This result is near
the —0.77 (or 20°) value predicted by the Jeffery equations
[21] corrected for elliptical particles [2].

The evolution of S, is more complex. Figure 3 shows
S, (#) and the net change in orientation AS, = S,(c0) —
S, (0) of the steady state orientation relative to the initial
orientation. The initial orientation S,(0) = —0.21 * 0.04
indicates that fibers are weakly oriented with the flow,
consistent with the high strain protocol used before each
measurement. At low strain amplitudes, there is no
discernible change in the orientation. At moderate strain
(y = 1.6), AS, increases as the activity persists for more
than a few cycles. At higher strain (2.6 <y = 3),
the steady state orientation reaches a maximum (S, (00) =
0.55%0.05) as the suspension becomes nematic
[Fig. 1(b)]. For strain amplitudes y = 3, AS, decreases
from this maximum value as the steady state fluctuations
increase.

Rod orbits 6(¢p(r)) are parameterized by two quantities,
¢(0) (the initial azimuth) and C = tanf(¢ = 7/2) (the
opening of the orbit) [21]. The distribution of ¢ does not
change in time and thus is identical to the distribution of
¢(0). The orbit parameter C,, = C/(C + 1) varies from 0
to 1 as the fiber tilts away from the vorticity (z) direction.
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FIG. 3 (color). Temporal evolution of the average orientation
in the x-z plane for different strain amplitudes, as indicated in the
legend. Inset: Change in orientation AS, = S,(c0) — S, (0).

When a fiber undergoes an irreversible displacement, C,
changes. Thus, activity can lead to a change in the distri-
bution of C,,. Figure 4 shows distributions of C;, before and
after runs at strains of 1.3 and 2.6. At low strains, the
distribution of C, remains rather flat with (C,) = 0.3,
consistent with steady shear experiments [23]. At higher
strains the distribution becomes strongly peaked around
C, = 0.03, as the fibers align with the vorticity. The peak
is the highest for y = 2.6, which corresponds to the great-
est orientation with (C,) = 0.094.

The temporal evolution of fiber alignment affects how
the system approaches the absorbing phase transition
(APT), which is characterized by steady states that are
either reversible (y <2.7) or irreversible (y = 2.7).
Fiber alignment is implicated because fibers aligned along
the vorticity (z) direction are less likely to collide, thus
promoting the reversible absorbing state.

Theories of APTs suggest that the activity n’ should
scale [14,24], in analogy to equilibrium phase transitions, as

n"(®@, 1) = nyl® = O NPF(t/1o|® — @ ), (1)

where 7 and 1, are the activity and cycle number at the start
of the experiment, and B and v are rheological activity and
time scaling exponents, respectively. The control parameter
@ is defined in lattice models as the fraction of occupied
sites. The value @, separates absorbing states (& < ®,)
from fluctuating states (& > ®,.).

We make a connection with the theories of APTs by
defining an effective volume fraction ® of rods that gov-
erns whether or not fibers collide when the suspension is
subjected to periodic shear. To determine ®, we consider
the mean-field volume v(y, C) swept out by a fiber during a
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FIG. 4 (color). Left: Schematic of a Jeffery orbit and its
projection (cross section) o in shades of gray. Upper right:
Temporal evolution of the control parameter ® for different
strains indicated in the legend. Dashed line indicates
®. = 0.60. Lower right: Probability distribution function of
C, = C/(C + 1) for selected strains.
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FIG. 5 (color). Rheological activity data rescaled using the
scaling exponents 8 = 0.86 and » = 1.09, with strains indicated
in the legend. Inset shows the best scaling that can be achieved
when ® is held constant, which is equivalent to using vy as the
control parameter. The curve in the inset for y = 2.04 starts on
the critical line but falls off after about 6 cycles, consistent with
the time at which ®(7) falls below 0.6 (see Fig. 4 inset).

cycle, which depends on y and C. For a strain amplitude v,
v = vy + ve, with vy the fiber volume and v the mean
volume swept out by the fiber cross-section o averaged
over a single-cycle and projected onto the gradient-
vorticity plane (see Fig. 4). The effective fiber volume
fraction is ®(vy, r) = Nv(y, t)/V, with N the number of
fibers and V the solution volume. Note that @ decreases as
fibers align with the vorticity, reflecting the reduced proba-
bility that oriented fibers have for colliding with one an-
other. Figure 4 shows the temporal evolution of & at
different strains and shows that ® can decrease by 15%
during an experiment.

To test the scaling hypothesis presented in Eq. (1), we
plot 7" /ngl®(1) — ®.|7F vs 1/1,|D(r) — D |”, where nf
and t, are the activity and time, respectively, when the
experiment starts, and where @, B, and v are adjusted to
achieve the best scaling. However, a curious problem arises
when the data are scaled, as the data for y < 2 scale best
for choices of @, near 0.6. The problem is that the scaling
function F is expected to be different for & > ®_. and
® < ®_; for several data sets, namely, those with y near
2.1, the time-dependent effective volume fractions ®(7)
cross @, (see Fig. 4). We deal with this issue by resetting
to and n( to their values just after ®(r) crosses P, con-
sistent with the system starting anew with a different scal-
ing function F. When this is done, we find that all the data,
irrespective of whether or not ®(r) crosses ®,, falls onto
one of two scaling curves, one for ® > @ and another for
O < P,.. For & > @, the scaling function F goes to a
finite value at large times, consistent with there being
persistent activity above the transition. Conversely, for
® < @, the scaling function F goes to zero at long times,

consistent with activity disappearing at long times below
the transition. This remarkable scaling is achieved for
®.=0.60*=0.01, »=1.09=*0.05 and B =0.86=*
0.07. The values of @, v, and B, are consistent with the
values 0.600, 1.081, and 0.827, respectively, expected for
Manna universality class [11,14,25].

For comparison, the inset in Fig. 5 shows the best scaling
that can be achieved if we assume that @ remains constant
in time. In this case, only the data for y < 2 scales, which
is consistent with our observation that the orientation of
fibers is nearly constant over this range.

The ultimate temporal decay of the raw rheological data
presented in Fig. 2 occurs with very nearly the same power
law over a wide range of strain amplitudes, from y = 2.0
to 2.7, suggesting a surprisingly wide range of critical or
near critical behavior. This occurs because collisions be-
tween fibers cause the fiber orientation to continue to
evolve as long as activity persists, which in turn increases
the probability that the system will find an absorbing state.
For sufficiently large vy, the alignment is no longer suffi-
cient to permit the system to find an absorbing state. This
picture is powerfully confirmed by the scaling of the
activity presented in Fig. 5 together with the evolution of
®(r) shown in Fig. 4.

We observe a striking shear-induced alignment of fibers
with the vorticity direction. Mason [20] pointed out that a
perfectly oriented suspension of non-Brownian rods is not
stable under periodic drive, which would explain why the
rods never achieve full alignment. More importantly, the
alignment of fibers changes the probability of shear-
induced collisions over time, which leads to a time-
dependent control parameter. This can cause a system
that is initially above ®, to fall below ®.. Surprisingly,
the scaling behavior of the underlying absorbing phase
transition is preserved, presumably because the time scale
of the evolution of the orientation is slow compared to the
activity relaxation time.
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