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We investigate the role of momentum for the transport of magnetization in the spin-1=2 Heisenberg

chain above the isotropic point at finite temperature and momentum. Using numerical and analytical

approaches, we analyze the autocorrelations of density and current and observe a finite region of the

Brillouin zone with diffusive dynamics below a cutoff momentum, and a diffusion constant independent of

momentum and time, which scales inversely with anisotropy. Lowering the temperature over a wide range,

starting from infinity, the diffusion constant is found to increase strongly while the cutoff momentum for

diffusion decreases. Above the cutoff momentum diffusion breaks down completely.
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Understanding spin transport in quantum many-particle
systems is a fundamental challenge to physics, of immedi-
ate relevance to future information technologies [1], and
intimately related to timely issues of dynamics and ther-
malization in a broader context [2]. While conventional
spin conductors like silicon [3], III–V semiconductors [4],
carbon nanotubes [5], or graphene [6] necessarily feature
spins which are associated with itinerant charge carriers,
insulating quantum magnets may open new perspectives
for spin transport, with pure magnetization currents flow-
ing solely by virtue of exchange interactions. Magnetic
transport in one-dimensional (1D) quantum magnets has
experienced an upsurge of interest in the past decade due to
the discovery of very large magnetic heat conduction [7]
with mean free paths above 1 �m [8]. Genuine spin trans-
port in quantum magnets remains yet to be observed ex-
perimentally; however, long nuclear magnetic relaxation
times [9] have been established, which even allow for
manipulation with magnetic fields [10].

Theoretically, significant attention has been devoted to
spin transport in 1D quantum magnets; see Refs. [11,12]
for reviews. The dissipation of spin currents is a key issue
in this context and has been analyzed extensively at zero
momentum and frequency in connection with the spin
Drude weight [13]. Spin current dynamics at finite mo-
mentum remains one of the open questions. In this Letter,
we will address this question for the antiferromagnetic and
anisotropic spin-1=2 Heisenberg (XXZ) chain

H ¼ J
XN

r

ðSxrSxrþ1 þ SyrS
y
rþ1 þ �SzrS

z
rþ1Þ; (1)

where Sir (i ¼ x; y; z) are the components of spin-1=2
operators at site r, N denotes the number of sites, J > 0
represents the exchange coupling constant, and � is the
anisotropy. The XXZ chain is a fundamental model to
describe magnetic properties of interacting electrons. It
is relevant to the physics of low-dimensional quantum
magnets [14], ultracold atoms [15], nanostructures [16],

and—seemingly unrelated—fields such as string theory
[17] and quantum Hall systems [18].
Early analysis of the time-dependent correlation func-

tion of the local spin density has been performed in the
high-temperature limit, T ¼ 1, suggesting the absence of
spin diffusion for 0 � � � 1 [19]. Subsequent studies
have concentrated on the spin Drude weight at zero mo-
mentum q ¼ 0 [13], allowing for no conclusions on diffu-
sion laws at finite momentum. The first low-temperature
quantum Monte Carlo studies at q � 0 [20] found no
evidence for spin diffusion; however, more recent results
from bosonization and transfer-matrix renormalization
group [21] as well as quantum Monte Carlo calculations
[22] are consistent with finite-frequency spin diffusion in
the small-momentum regime, at � ¼ 1 and for low tem-
peratures T � J, with a spin-diffusion constant D which
diverges / 1=T lnT. The physics at intermediate tempera-
tures and arbitrary momenta remains undisclosed.
Therefore, in this Letter, we consider the transport of

magnetization by analyzing autocorrelations of spin den-
sity and current at finite momenta, covering the complete
Brillouin zone, and at intermediate temperatures 0:5J �
T � 1 (@ ¼ kB ¼ 1). We focus on the case of finite an-
isotropy �> 1, where Eq. (1) features a gapped ground
state. Using a combination of exact diagonalization and
perturbation theory, we uncover a regime of diffusive
transport below a finite critical momentum qD. In this
regime, density modes at fixed momentum q decay with
a diffusion constant Dq and our analysis is consistent with

Dq independent of momentum and inversely proportional

to the anisotropy. As the temperature is lowered from
T ¼ 1, we observe a decrease of the critical momentum
and an almost exponential increase of the diffusion con-
stant. We provide evidence for a complete breakdown of
diffusion above the critical momentum.
We begin by introducing the generalized diffusion coef-

ficient as a quantity suitable to describe the evolution of
an harmonic spin density profile close to equilibrium, i.e.,
in the linear response regime. To this end, the central
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quantities we analyze are the autocorrelation functions
CS;qðtÞ ¼ RehSzqðtÞSz�qi=N and CJ;qðtÞ ¼ RehJzqðtÞJz�qi=N
of the spin density Szq ¼

P
re

{qrSzr and the spin current J
z
q¼

J
P

re
{qrðSxrSyrþ1�SyrSxrþ1Þ at momentum q ¼ 2�k=N [23],

where Re indicates the real part, h� � �i denotes the canoni-
cal equilibrium average at the inverse temperature
� ¼ 1=T, and t represents the time. Since the density Szq
and the current Jzq are connected by the lattice continuity

equation @tS
z
q¼ð1�e{qÞJzq, the autocorrelations are re-

lated by @2t CS;qðtÞ¼�~q2CJ;qðtÞwith the abbreviation ~q2 ¼
2ð1� cosqÞ. The generalized, time- and momentum-
dependent diffusion coefficient is defined via

DqðtÞ ¼
@tCS;qðtÞ
�~q2CS;qðtÞ

¼ I1qðtÞ
CS;qð0Þ � ~q2I2qðtÞ

: (2)

To arrive at the right-hand expression in Eq. (2), we
integrate the continuity equation twice, using
@tCS;qðtÞjt¼0 ¼ 0 and introducing the two integrals I1qðtÞ ¼R
t
0 dt

0CJ;qðt0Þ and I2qðtÞ ¼
R
t
0 dt

0I1qðt0Þ.
The left-hand expression in Eq. (2) identifies the quan-

tity ~q2DqðtÞ with the instantaneous decay rate, at time t, of

a spin density profile with wave vector q close to equilib-
rium. Fick’s law corresponds to the case of DqðtÞ ¼ const.

The main goal of this Letter is to analyze the time and
momentum dependence of this quantity versus tempera-
ture. We emphasize that a complete knowledge of this
dependence allows us to propagate arbitrarily shaped
spin density profiles in time. This does not only share a
common interest with time-dependent density-matrix re-
normalization group studies [24], yet confined to zero
temperature, but even more so may be of relevance to laser
pulse induced time-dependent transport measurements,
including recently proposed time-of-flight and thermal
imaging techniques [25].

Qualitatively, the variation of DqðtÞ versus t can be

understood from a standard relaxation-time approxima-
tion, in which the current autocorrelation CJ;qðtÞ ¼
expð�t=tqÞCJ;qð0Þ decays exponentially. For short times,

t � tq, Eq. (2) then yieldsDqðtÞ � 1� e�t=tq , which starts

with a linear increase,DqðtÞ / t, and turns into a ‘‘plateau’’

DqðtÞ � const, starting at t ¼ �q * tq. This plateau marks

the hydrodynamic regime. Namely, proceeding to the long-
time limit, i.e., for t � tq, and to the long-wavelength

limit, i.e., for ~q2ðt� tqÞDq � 1, Eq. (2) leads to a time-

independent diffusion constant DqðtÞ ¼ D0 þOð~q2Þ,
where Dq ¼ tqCJ;qð0Þ=CS;qð0Þ, which is equivalent to

Einstein’s relation [26], and D0 ¼ Dq¼0. In principle, par-

tial conservation of currents at q ¼ 0, i.e., the impact of a
finite Drude weight at zero frequency [13], can also be
included in this qualitative picture. For that case the ex-
ponential decay of CJ;0ðtÞ has to be leveled off into

CJ;0ðt ! 1Þ ¼ const> 0. This leads to a linear increase

D0ðt ! 1Þ / t. However, the Drude weight will not be an

issue in this Letter. In fact, there is no zero-frequency
contribution of currents at q � 0, which follows directly
from the continuity equation.
While the gross feature of the preceding relaxation-time

ansatz can serve as a guideline to interpret the results of
unbiased exact diagonalization data, on which we will
report later, it is not justified a priori. Therefore, and to
gain a deeper insight into the high-temperature current
dynamics generated by the Heisenberg model, we will first
turn to a quantitative discussion using an analytical
method. This method employs the projection operator
perturbation theory (POPT) of Ref. [27], which allows us
to derive a rate equation @tCJ½S�;qðtÞ ¼ ��J½S�;qðtÞCJ½S�;qðtÞ
for the current [density] autocorrelation. This rate equation
gives access to DqðtÞ through the right-hand [central] ex-

pression in Eq. (2). The POPT yields a short-time expan-
sion for the decay rate �J½S�;qðtÞ, the terms of which can be

evaluated from a decomposition H ¼ H0 þH1, if the ob-
servable of the autocorrelation CJ½S�;qðtÞ is a conserved

quantity for the unperturbed Hamiltonian H0. For the
current, we choose the XY model for H0, in which Jq is

conserved only at q ¼ 0. For the density, we choose the
Ising model forH0, in which Sq is conserved for all q. Then

for short times we obtain approximately:

�J;0ðtÞ
�J

� �Jt

2
þ ð�JtÞ3

24
þO½ð�JtÞ5�; tJ & 1:5; (3)

�S;qðtÞ
~qJ

� ~qJt

2
þ ð~qJtÞ3

16
þO½ð~qJtÞ5�; tJ &

2:1

�
: (4)

For the full quantitative evaluation of DqðtÞ we determine

the leading-order term in Eqs. (3) and (4) numerically
exact, following the scheme in Ref. [27], which leads to
small changes only. We note that for a complete integration
of Eq. (2) the high-temperature limits of the static corre-
lation functions are needed, i.e., CJ½S�;qð0Þ ¼ 1=8 [1=4].

For q ¼ 0, we obtain from the POPT and the right-hand
expression in Eq. (2) a leading-order prediction as follows:
the current autocorrelation CJ;0ðtÞ decays even stronger

than in a simple relaxation-time approximation, i.e., ac-
cording to a Gaussian, and the diffusion coefficient D0ðtÞ
is an error function. This prediction is consistent with
using Eq. (3) for all times, which is justified because the
current relaxation time from Eq. (3) is t0J � 1:9=�,
CJ;0ðt0Þ=CJ;0ð0Þ ¼ 1=e. Therefore, for � ¼ 1:5 or 2.0, as

in this Letter,D0ðtÞ has saturated for times within tJ & 1:5.
The resulting quantitative D0ðtÞ is shown in Fig. 1 [dark
gray (red) solid curves]: Here, D0ðtÞ first increases linearly
but then saturates at a constant value D0J � 0:88=�,
which is reached at tJ * �0J � 3:0=�. For the remainder
of this Letter we refer to the saturation time �q as the

‘‘current relaxation time’’ rather than tq, since it can be

extracted more precisely from later numerical data. We
emphasize that our value of D0 agrees remarkably well
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with other approaches in Refs. [28,29]. It is worth men-
tioning that, for � ! 1, the 1=� scaling of D0 may break
down due to possible recurrences of CJ;0ðtÞ; see also

Ref. [30] for an alternative point of view.
For q � 0, we obtain from the POPT and the central

expression in Eq. (2) a prediction for the full momentum
dependence of DqðtÞ. This prediction is only valid at short

times, set by Eq. (4). The resulting quantitative DqðtÞ is
depicted in Fig. 1 [light gray (green) solid curves]. Clearly,
DqðtÞ is not constant in the short-time domain as a function

of q. The q dependence arises from the next-to-leading-
order term of the POPT and becomes significant for
momenta above q� 0:2��, at � ¼ 1:5 and 2.0, and is
particularly evident for q ¼ �.

In order to complete the picture at � ¼ 0 for arbitrary
momenta and times we apply exact diagonalization (ED)
to chains of length N ¼ 18, allowing for a q grid with
�q � 0:11�. Figure 1 depicts our results forDqðtÞ. Several
comments are in order. First, Figs. 1(a) and 1(b) show a
convincing agreement between ED and both POPTs within
their respective ranges of validity, which corroborates our
analysis. Next, a given density mode at wave vector q
shows the signature of a diffusive decay if there is a plateau
with DqðtÞ � const within a ‘‘long-time’’ window �q &

t & tD with �q � tD. Clearly, Fig. 1 shows that the first

three (four) momenta for � ¼ 1:5 (2.0) feature such pla-
teaus. Long-time deviations from this behavior can have
several origins, such as finite-size effects, finite Drude
weights, or other low-frequency anomalies. Most remark-
able, the plateau values of Dqð�q & t & tDÞ � D0 and

�q � �0 are independent of momentum, to within the

typical finite-size variations which occur for N ¼
16 ! 18. Finite-size effects are further quantified in
Fig. 2 for the interval tJ & 10. While a constant finite q
cannot be maintained as N varies, it is still obvious that
system sizes of N ¼ 18 are completely sufficient to deter-
mine Dq at the plateau. The weak dependence on q has to

be contrasted against the significant q dependence for
larger momenta. In agreement with the POPT for q ¼ 0,
the values ofD0 and �0 from ED can be scaled onto a single
expression for the two anisotropies studied, namely,
D0J � 0:88=� for tJ * �0J � 3:0=�. This is one of the
main results of this Letter, i.e., the existence of an extended
momentum-space region with a q-independent diffusion
constant / 1=�. Clearly, the number of momenta to which
the diffusion criterion applies is smaller in Fig. 1(a) than in
1(b). For both � ¼ 1:5 and 2.0, we find no indications of
diffusion for q * 0:22�� 	 qD. Instead, Dq>qDðtÞ dis-

plays divergent behavior due to oscillations of CS;qðtÞ
with time, preventing diffusive behavior from occurring.
These oscillations have already been reported in Ref. [31]
for smaller �.
We emphasize that ED results for the spectra CJ½S�;qð!Þ

at small q versus frequency! agree with our interpretation
from the time domain. For example, focusing on � ¼ 1:5,
Fig. 3(a) shows that the spectrum CJ;qð!Þ=CS;qðt ¼ 0Þ is
consistent with a Gaussian of height D0J � 0:59, as

0 10
t J

0

1.2

D
q(t

) 
/ J

0 10
t J

N=10
N=18

(b) q/(2π/N)=1(a) q=0

FIG. 2. Finite-size scaling results for the diffusion coeffi-
cient DqðtÞ at (a) q ¼ 0, (b) q=ð2�=NÞ ¼ 1 for different

N ¼ 10; 12; . . . ; 18 at � ¼ 0 and � ¼ 1:5. In (a) finite-size
variations can be neglected for tJ & 10 at N ¼ 18. While q ¼
const cannot be maintained in (b), the tendency is similar to (a).
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FIG. 1 (color online). The time- and momentum-dependent
diffusion coefficient DqðtÞ at � ¼ 0 and (a) � ¼ 1:5,

(b) � ¼ 2:0. ED results are shown for N ¼ 18 and q=ð2�=NÞ ¼
0, 1, 2, 3, 4, and 9 (nonsolid curves). POPT results are shown for
q ¼ 0 [dark gray (red) solid curves] and q > 0 [light gray
(green) solid curves]. Thick arrows on the tJ axis mark the
locations of the current decay time �q.
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FIG. 3 (color online). Spectrum of the (a) current and
(b) density autocorrelation at � ¼ 0 and � ¼ 1:5. ED results
are shown for N ¼ 18 (symbols). In (a) a Gaussian with height
D0 and in (b) a Lorentzian with width ~q2D0 are indicated for
comparison (curves), using D0J � 0:59 from the POPT.
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predicted by the POPT at q ¼ 0. The low-frequency be-
havior is still governed by finite-size effects, and deviations
from the Gaussian occur at a frequency scale !=J & 1,
which is independent of q. This agrees with the
q-independent time scale in Fig. 2, where finite-size effects
set in. Similar spectra of CJ;qð!Þ have been obtained in

Ref. [32] for q ¼ 0. Note that the (finite-size) q ¼ 0 Drude
weight at ! ¼ 0 is not shown in Fig. 3(a). Figure 3(b)
shows that CS;qð!Þ is consistent with a Lorentzian of width
~q2D0, again D0J � 0:59, as expected for diffusive density
decay.

Now we turn to the effects of temperature by increasing
� from 0 to �J ¼ 2. Since the POPT is not applicable at
� � 0, we focus on the ED results. Figures 4(a)–4(c)
summarize our findings for � ¼ 1:5 and �J ¼ 0:5; 1; 2.
We observe two effects. First, as the temperature is low-
ered, the number of momenta with diffusive density dy-
namics decreases. At �J ¼ 0:5 and 1 the mode with
q ¼ 0:11� still decays diffusively but for �J ¼ 2 only
the q ¼ 0 mode displays diffusion. Second, as the tem-
perature is lowered, Dq and �q increase significantly.

For q ¼ 0 this increase can be followed up to �J ¼ 2.
Figure 4(d) displays D0 versus � in a semilogarithmic plot
for � ¼ 1:5 and 2.0. From this plot, one might be tempted
to speculate on an exponential increase of D0 with �
beyond the temperature window depicted; see a related
claim in Ref. [30]. However, in view of the hydrodynamic
relation D0 ¼ t0CJ;0ð0Þ=CS;0ð0Þ this is a subtle issue. From
our numerical analysis, we find CS;0ð0Þ to be the dominant

source of D0’s T dependence for 0<�J < 2. But CS;0ð0Þ
is not / expðc�Þ for all � [33]. An exponential increase of
D0 must further break down as � ! 1 due to the finite
spin gap for �> 1. We also mention that, for � ¼ 1 and
�J � 1, the dominant T dependence of D0 stems from
t0 / 1=ðT lnTÞ [21,22], which is not exponential.

Finally, we turn to a more detailed discussion of the
temperature dependence of the critical momentum qD. To
this end, we first collect all momenta q & qD in Fig. 5.
Then, to rationalize this, we invoke the standard hydro-
dynamics criterion that the relaxation time 1=ð~q2DqÞ of a
diffusive density mode should be larger than the decay time
�q of the current, or equivalently, that a diffusive density

spectrum should be narrower than the current spectrum;
see Fig. 3. Therefore, breakdown of diffusion occurs at
~q2Dq�q � 1, where we may set Dq ¼ D0 and �q ¼ �0,

due to the weak q dependence of these quantities in our
case. Based on our ED results forD0 and �0, Fig. 5 displays
the lines ~q2D0�0 ¼ 1 versus � for both � ¼ 1:5 and 2.0
(solid curves). The obvious agreement between these lines
and the boundaries for the collected values of q & qD is a
convincing consistency check of our approach. Apparently,
as � increases, qD decreases. In view of the temperature
dependence of D0 and �0, this decrease is also approxi-
mately exponential for 0 � �J & 2. To asses the relevance
of finite-size effects, Fig. 5 contains a comparison between
the lines ~q2D0�0 ¼ 1 and the observed diffusive modes for
N ¼ 16 and 18 (symbols). Given the limited resolution of
the q grid, the agreement with these two system sizes is
remarkably good.
In summary we have investigated magnetization trans-

port in the spin-1=2 XXZ chain above the isotropic point
at finite temperature and momentum. We found an ex-
tended momentum-space region of spin diffusion with an
approximately time- and momentum-independent diffu-
sion constant. The diffusion cutoff wave vector (diffusion
constant) was found to scale approximately linear with the
(inverse) anisotropy and to decrease (increase) strongly
with the inverse temperature.
This work was supported by the Deutsche Forschungs-

gemeinschaft through FOR912, Grants No. BR 1084/6-1
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FIG. 4 (color online). (a)–(c) ED results for the diffusion
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FIG. 5 (color online). The diffusive range of momenta q versus
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N ¼ 16 (squares) and N ¼ 18 (circles). [Open symbols are
borderline values; see Figs. 1 and 4(a)–4(c).] The curve
~q2D0�0 ¼ 1 is indicated for comparison (solid curves).
(Dashed curves estimate errors for D0 and �0.)
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Lect. Notes Phys. 645, 349 (2004); O. Rojas, S.M. de
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