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Observing quantum effects such as superpositions and entanglement in macroscopic systems requires

not only a system that is well protected against environmental decoherence, but also sufficient measure-

ment precision. Motivated by recent experiments, we study the effects of coarse graining in photon number

measurements on the observability of micro-macro entanglement that is created by greatly amplifying one

photon from an entangled pair. We compare the results obtained for a unitary quantum cloner, which

generates micro-macro entanglement, and for a measure-and-prepare cloner, which produces a separable

micro-macro state. We show that the distance between the probability distributions of results for the two

cloners approaches zero for a fixed moderate amount of coarse graining. Proving the presence of micro-

macro entanglement therefore becomes progressively harder as the system size increases.

DOI: 10.1103/PhysRevLett.107.250401 PACS numbers: 03.65.Ta, 03.65.Ud

How does the classical world emerge from quantum
physics? It is now widely recognized that decoherence is
one important factor. As the size of physical systems in-
creases, it becomes harder to isolate them completely from
their environment, and the interaction with the environment
destroys quantum features such as superpositions and en-
tanglement [1,2]. However, this is not the only reason why
quantum effects are difficult to detect at the macroscopic
scale. Measurement precision also seems to be essential. For
example, in 1979 Mermin [3] studied a singlet state of two
large spins J. He showed that this state can violate a Bell
inequality for arbitrarily large J, thus proving entanglement
and quantum nonlocality, but the necessary angular resolu-
tion of the measurements decreases as 1

J , making them

harder and harder to perform for increasing J. Later, Peres
[4] showed for the same state that its spin correlations can be
reproduced by a classical model if the resolution in the
measurement of the spin projections M is much worse

than
ffiffiffi
J

p
. Conversely, it was shown in Ref. [5] for a closely

analogous multiphoton state that macroscopic entanglement
can be proved by measuring spin (or, more precisely, Stokes
parameter) correlations, provided that the precision of the

photon counters is better than
ffiffiffiffi
N

p
, whereN ¼ 2J is the total

number of photons.
Thementioned results concerned the entanglement of two

macroscopic systems (spins), and they were largely theo-
retical, although Ref. [6] succeeded in demonstrating entan-
glement for up to 12 photons for states of the form
considered in Ref. [5]. More recently Ref. [7] claimed the
experimental creation and detection of ‘‘micro-macro’’ en-
tanglement between one photon in one spatial mode and of
order 104 photons in another spatial mode, by greatly am-
plifying one photon belonging to an initial entangled pair. In
their argument, the authors of Ref. [7] used very coarse-

grained (binary) measurements of their multiphoton state, in
combination with an entanglement criterion that had been
derived for individual photons (qubits) in Ref. [6]. It was
subsequently shown in Refs. [8,9] that this criterion is not
conclusive in the multiphoton case because it can also be
violated with separable states. In particular, it was shown in
Ref. [9] that for extremely coarse-grained measurements of
the type considered in Refs. [7,8] a ‘‘measure-and-prepare’’
type amplification strategy, which destroys all entangle-
ment, yields results that are indistinguishable from those
obtained by a unitary quantum cloner, which creates micro-
macro entanglement in the ideal case.
Demonstrating entanglement in this system with very

coarse-grained measurements is thus impossible, unless
supplementary assumptions are made [10]. On the other
hand, it is clear that under close-to-ideal conditions micro-
macro entanglement analogous to Schrödinger’s famous
cat example [11] would indeed be created in the system of
Ref. [7]. The spin correlation criterion of Ref. [5] can be
adapted to the micro-macro situation. Entanglement could
be proved experimentally using this adapted criterion pro-
vided that there is not too much loss and, most importantly,
that the photon counters can count large photon numbers
with an accuracy at the single-photon level [8,9]. However,
this becomes very difficult for large photon numbers.
There is thus strong experimental and theoretical motiva-
tion to study the effects of coarse graining on the observ-
ability of micro-macro entanglement in this system more
generally. Is the requirement for single-photon level reso-
lution just an unfortunate feature of the particular criterion
used in Refs. [8,9], or is it more fundamental? This is the
question that we study in this Letter.
Figure 1 is a schematic representation of the system that

we are considering [7,8]. A source produces pairs of
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entangled photons in two distinct spatial modes A and B in

the polarization singlet state, jc�i¼ 1ffiffi
2

p ðayhbyv�ayvbyh Þj0i,
where j0i is the vacuum for all modes. Identifying the h
and v polarization with the north and south poles of the
Bloch sphere, one can introduce modes for general polar-
ization directions characterized by spherical angles � and

� by the relation a�;� ¼ cos�2 e
ið�=2Þah þ sin�2 e

�ið�=2Þav.
Equatorial polarization modes correspond to � ¼ �=2.
Different choices of the phase � give different equatorial
bases (e.g., left and right circular polarization, or two
orthogonal diagonal polarizations), and we will sometimes
use the simplified notation a� � a�=2;� and a�? �
a�=2;�þ� for the two orthogonal modes corresponding to

the basis defined by �. The singlet state keeps its form in

any basis, in particular, jc�i¼ 1ffiffi
2

p ðay�by�?�ay�?b
y
�Þj0i¼

1ffiffi
2

p ðj�iAj�?iB�j�?iAj�iBÞ, where we have introduced

the notation j�iA � ay�j0i for a single �-polarized photon

in mode A, and similarly for mode B.
The photon in mode A is measured directly. The photon

in mode B is amplified. We first consider the case where
this amplification is done by a unitary phase-covariant
quantum cloner [12]. This type of cloner makes good
copies only of input states that lie on the equator of the
Bloch sphere. It can be realized based on stimulated para-
metric down-conversion [13]. The Hamiltonian describing
this process is

H ¼ i�byhb
y
v þ H:c: ¼ i

�

2
ðby2� þ by2�?Þ þ H:c: (1)

It has the same form for any choice of equatorial basis,
which is why the cloning process is phase covariant.
Applying the unitary cloning operation U ¼ e�itH to the
photon in mode B results in the state

Ujc�i ¼ 1ffiffiffi
2

p ðj�iAj��?iB � j�?iAj��iBÞ; (2)

with the multiphoton states

j��i ¼ X1
k;l¼0

�kl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2kþ 1Þ!ð2lÞ!p
k!l!

j2kþ 1i�j2li�?; (3)

j��?i ¼ X1
k;l¼0

�kl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2kþ 1Þ!ð2lÞ!p
k!l!

j2ki�j2lþ 1i�?; (4)

with �kl � C�2ð� �
2Þk �l

2 , C � coshg, � � tanhg, where

g ¼ �t is the gain of the amplifier and j2ki� is the Fock

state with 2k photons in mode b�, and similarly for the

other states. Because of the structure of H, j��i only
contains terms with odd numbers of �-polarized photons
and even numbers of �?-polarized photons, whereas the
opposite holds for j��?i. The two macro states j��i and
j��?i are thus orthogonal to each other, and the micro-
macro state of Eq. (2) is maximally entangled, which is
consistent with the fact that the phase-covariant cloning
transformation U is unitary. For more details, see [7–10].
In experiments one aims to infer the existence of entan-

glement from the results of measurements, ideally without
making assumptions about the process that led to those
results. In this Letter we will consider photon counting
measurements, which are formally equivalent to spin mea-
surements. For example, one can define the Stokes parame-

ters Jz ¼ byhbh � byvbv, Jx ¼ by�=2;0b�=2;0 � by�=2;�b�=2;�,
Jy ¼ by�=2;�=2b�=2;�=2 � by�=2;3�=2b�=2;3�=2 for system B,

with �z ¼ jhihhj � jvihvj, and similarly for the other
Pauli operators, the corresponding single-photon observ-
ables for system A. One can also define analogous observ-
ables for general directions (other than x; y; z).
Based on the results of Ref. [5], one can show [8] that all

separable states fulfill jh ~�A � ~JBij � hNBi; i.e., the spin-
spin correlation between the micro and macro systems is
bounded by the total number of photons in the macro

FIG. 1 (color online). Schematic of the experiments considered in this Letter. A source produces an entangled photon pair in a
polarization singlet state. Photon A is detected in an arbitrary polarization basis with the help of the phase rotator, polarizing beam
splitter (PBS), and single-photon detectors (SPD). Photon B is amplified, either by a unitary cloner, which preserves the initial
entanglement, or by a measure-and-prepare cloner, which completely destroys the entanglement. The resulting multiphoton state is
detected in a similar way, where the single-photon detectors are now replaced by photon counters which detect the number of photons
in each polarization mode. The coarse-graining parameter � characterizes the precision with which the photon number can be
measured.
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system. In contrast, the state of Eq. (2) gives jh ~�A � ~JBij �
hNBi ¼ 2. Both ~JB and NB involve measurements of large
photon numbers. One sees that if these measurements are
inaccurate by just a few photons, the presence of entangle-
ment cannot be proven using this criterion. This leads to
the question of if the requirement for single-photon level
resolution is a feature just of this particular criterion, or if it
is in fact more general.

Here we address this question by comparing the proba-
bility distributions of results under coarse graining for the
(entanglement-preserving) unitary phase-covariant cloner
described above and for (entanglement-breaking) measure-
and-prepare phase-covariant cloners [9,14] described be-
low. For comparing the two cases, we consider general
single-photon polarization measurements characterized by
angles �A and�A on A and photon counting measurements
in arbitrary polarization bases �B,�B on B. Without loss of
generality, one can adopt the point of view that the mea-
surement on A projects the photon in B before amplifica-
tion into a well-defined state j�A;�Ai (because the two
initial photons are prepared in a singlet state). The mea-
surement in A thus defines the input state of the amplifier in
B. As the amplification processes are phase covariant, only
the difference �A ��B � �� is important.

The measure-and-prepare cloners are based on measur-
ing the single photon in mode B in a random equatorial
polarization basis, and then preparing a multiphoton state
whose form depends on the measurement result. This
procedure clearly destroys the entanglement between A
and B, since a measurement is performed. The output state
of a measure-and-prepare cloner is

�mp ¼ 1

�

Z
d�ðPþð�A;�A;�Þj��ih��j

þ P�ð�A;�A;�Þj��?ih��?jÞ; (5)

where Pþð�A;�A;�Þ ¼ jh�A;�Aj�ij2 and
P�ð�A;�A;�Þ ¼ jh�A;�Aj�?ij2 indicates the probability
of getting � outcome for the measurements in the equato-
rial basis characterized by �, and the state j��ð?Þi is the
multiphoton state that the cloner generates if the measure-
ment outcome is j�ð?Þi.

The state that is prepared depends on the specific
measure-and-prepare cloner considered. For simplicity
we will compare the unitary and measure-and-prepare
cloners for a fixed total number of output photons N.
Since we are considering only photon counting measure-
ments (which project onto subspaces of fixed N in any
case), this does not restrict the generality of our argument.
For the unitary cloner we will thus consider the states
obtained from Eqs. (3) and (4) by projecting onto a fixed
number N of photons in B. For the measure-and-prepare
cloner we will begin by considering the simplest example,
where one prepares N photons in the state found by the
random equatorial measurement:

j��i ¼
ðby�ÞNffiffiffiffiffiffi

N!
p j0i: (6)

One can show that such a measure-and-prepare cloner is
asymptotically an optimal phase-covariant cloner [9].
Let us begin by discussing equatorial measurements on

A and B; that is, �A ¼ �B ¼ �=2. Figure 2 shows the
probability distribution of the outcomes jji�B

jN � ji�B?
for photon counting measurements in B satisfying
�� ¼ 0, for both the unitary cloner and the measure-
and-prepare cloner described above. As we have noted
previously, the unitary cloner has a distinct odd-even struc-
ture. The measure-and-prepare cloner does not. However,
apart from this fine structure the two distributions are
extremely similar. This is made explicit in the inset of
Fig. 2, where pairs of neighboring photon numbers were
binned into nonoverlapping bins. After this moderate
amount of coarse graining, the two distributions are now
almost indistinguishable by the naked eye.
The results for �� ¼ � look identical if one replaces j

by N � j. Because of the phase covariance of the two
cloners, the probability distribution for general �� can
be expressed in terms of the probability distributions for
�� ¼ 0 and �� ¼ �:

Pðj;��Þ ¼ cos2
�
��

2

�
Pðj; 0Þ þ sin2

�
��

2

�
Pðj; �Þ

þ 2 sin

�
��

2

�
cos

�
��

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðj; 0ÞPðj; �Þ

q
; (7)
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FIG. 2 (color online). Probabilities of measuring j photons in
photon counter B1 of Fig. 1, for a total photon number N ¼ 100,
for both the unitary cloner defined by Eqs. (1)–(4) and the
measure-and-prepare (M&P) cloner defined by Eqs. (5) and
(6). The input state j�A;�Ai, which is prepared by the measure-
ment in A, satisfies �A ¼ �=2, and the measurement in B
satisfies �B ¼ �=2 and �B ¼ �A. The probabilities for the
unitary cloner have a distinctive odd-even structure, whereas
those for the measure-and-prepare cloner do not. However, the
inset shows that when pairs of neighboring photon numbers are
put into nonoverlapping bins, the two resulting probability
distribution functions are almost identical.
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where Pðj; 0Þ ¼ j!ðn�jÞ!
fði=2Þ!½ðn�j�1Þ=2�!g2 and Pðj; �Þ ¼

t!ðn�jÞ!
f½ðj�1Þ=2�!½ðn�jÞ=2�!g2 for the unitary cloner, and Pðj; 0Þ ¼

2�n!
�ðn�jÞ!j!Bðjþ 1=2; n� jþ 3=2Þ and Pðj; �Þ ¼

2�n!
�ðn�jÞ!j!Bðjþ 3=2; n� jþ 1=2Þ for the measure-and-

prepare cloner, with Bða; bÞ ¼ �ðaÞ�ðbÞ
�ðaþbÞ the Euler beta

function.
Hence, also for general �� the probability distributions

for the two cloners become essentially indistinguishable
under the described binning. This implies that in the pres-
ence of a moderate amount of coarse graining it is impos-
sible to distinguish the micro-macro entangled state of
Eq. (2) from a completely separable state, if the measure-
ments for A and B are both on the equator of the Bloch
sphere.

We will now discuss more general measurement direc-
tions. For general measurements, we should modify the
measure-and-prepare cloner. That is because the measure-
and-prepare cloner defined by Eq. (6) is not a good ap-
proximation to the unitary cloner for measurements on or
near the pole of Bloch sphere. In fact, the state generated
by the unitary cloner is highly squeezed with respect to Jz,
whereas the state generated by this particular measure-and-
prepare cloner is not. This can be seen from the form of H
in Eq. (1), which clearly does not change the value of Jz at
all, and from expanding the state of Eq. (6) in the h� v
basis. Therefore we modify the state of Eq. (6) by just
keeping the terms with the smallest values of Jz in order to
have a high degree of squeezing:

j��i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�þ 1Þp X�

k¼0

ðei�ð2kþ1Þjn� kihjnþ kþ 1iv

þ e�i�ð2kþ1Þjnþ kþ 1ihjn� kivÞ; (8)

where the moduli of the coefficients of all terms can be
chosen equal for small �, n ¼ Nþ1

2 , � indicates how many

terms we are keeping, and the state is written in the h� v
basis. Clearly � ¼ 0 is the most squeezed case, and as it
increases, the state becomes less squeezed. The results
shown below are for � ¼ 2.

We quantify the distance between the probability distri-
butions for the two cloners by the Manhattan norm, which
is defined as

D ¼ X
j

jPuðjÞ � PmpðjÞj; (9)

where PuðjÞ and PmpðjÞ are the distributions for the unitary
and measure-and-prepare cloner, respectively. This is a
global measure of statistical difference between two proba-
bility distributions [15]. We furthermore model the coarse
graining in this experiment with a basic symmetric over-
lapping binning; i.e., we consider coarse-grained probabil-
ity distributions

�PðjÞ¼Pðj���1
2 Þþ���þPðjÞþ���þPðjþ��1

2 Þ
�

; (10)

where � is the bin size. For convenience we only consider
odd values of � in the following, and we are using periodic
boundary conditions for j. Other choices of coarse graining
lead to equivalent results.
Figure 3 shows the distance D between the two distribu-

tions as � is increased. The figure shows the results for one
specific choice of angles, but we have tested over 700
different combinations, exploring all regions of phase
space, and the trend is the same for all choices of angle.
One sees that the distance decreases with � in a way that is
almost independent of N. This means that in the present
system photon number resolution at the single-photon level
is essential in order to see quantum features. Note that this is
consistent with the behavior for equatorial measurements
discussed above (where binning of neighboring photon
numbers is sufficient to make the distance unobservable).
This implies that for increasing N the distance decreases
faster and faster in terms of the relative coarse-graining
error �=N (see the inset of Fig. 3). For increasing N it
thus becomes more and more difficult to distinguish the
two cloners, and hence to provemicro-macro entanglement.
We have seen that a small and fixed amount of coarse

graining makes the difference between the entangled and
separable micro-macro states unobservable. This is in con-
trast to the macro-macro entangled state discussed in the

introduction, where sub-
ffiffiffiffi
N

p
resolution is sufficient to

prove entanglement [5]. Micro-macro entanglement is
thus more fragile under coarse graining than macro-macro
entanglement (at least for these examples), maybe because
there is less entanglement in the state to begin with (1 ebit
here compared to logN ebits for the macro-macro singlet
state). From the experimental point of view this means that
with current technology it is probably impossible to prove
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D

0.0 0.2 0.4 0.6 0.8 1.0 N
0.00
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0.10
0.15
0.20
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D

N 91
N 71
N 51

FIG. 3 (color online). The distance between the probability
distributions for the unitary and measure-and-prepare cloner,
quantified by the Manhattan-norm distance D of Eq. (9), as a
function of the bin size � of Eq. (10). The distance decreases
with � in a way that is almost independent of the photon number
N. As a consequence, as shown in the inset, the distance
decreases faster and faster as a function of the relative error
�=N, when N is increased. The results shown are for �A ¼ �=2,
�B ¼ �=12, and �� ¼ 0, but the behavior is generic; see text.
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the present kind of micro-macro entanglement without
supplementary assumptions for large photon numbers us-
ing photon counting measurements.

Conceptually, our results strengthen the idea that precise
(non-coarse-grained) measurements are generally essential
for demonstrating quantum features at the mesoscopic or
macroscopic level. Anotherwell-known example is the ‘‘cat
state,’’ i.e., the superposition of two coherent states of a
single bosonic mode [2]. For coherent states with large
amplitudes, the ripples in the Wigner function that indicate
the quantum superposition require increasingly high reso-
lution for the quadrature measurements in order to be ob-
servable. Analyzing the necessary resolution for quadrature
measurements, i.e., homodyne detection, for our present
example is work for the future. However, Ref. [16] recently
studied the effect of photon loss, which can be seen as a
form of coarse graining, and found results that are consis-
tent with ours. See also Ref. [17], which discusses the
effects of noise and coarse graining on the quantum-
classical transition in the context of the proposal of
Ref. [5]. We would also like to mention Ref. [18], where a
Bell inequality violation is predicted for very coarse-
grained measurements. However, the considered measure-
ments use a strong nonlinear interaction that produces phase
shifts of � between subsequent photon number states,
which corresponds to high resolution in a slightly more
general sense. We would therefore argue that the results
of Ref. [18] are not in contradiction with the hypothesis that
high resolution is essential, but rather show that the concept
of coarse graining should be refined in contexts where
strong interactions are considered. Amore detailed analysis
of this question is also work for the future.
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