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Spin-selective tunneling of holes in SiGe nanocrystals contacted by normal-metal leads is reported. The

spin selectivity arises from an interplay of the orbital effect of the magnetic field with the strong spin-orbit

interaction present in the valence band of the semiconductor. We demonstrate both experimentally and

theoretically that spin-selective tunneling in semiconductor nanostructures can be achieved without the

use of ferromagnetic contacts. The reported effect, which relies on mixing the light and heavy holes,

should be observable in a broad class of quantum-dot systems formed in semiconductors with a degenerate

valence band.
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The spin-orbit interaction (SOI) has become of central
interest in recent years [1] because it enables an all-
electrical manipulation of the spin. In the field of spin
qubits, one of us [2] suggested the electrical control of
localized spins by means of the electric-dipole spin reso-
nance, and this scheme has been successfully used for spin
rotations of electrons in quantum dots (QDs) [3,4]. Much
earlier, Datta and Das [5] proposed a semiconductor tran-
sistor that would operate through a gate-controlled spin
precession, mediated by the SOI. In this type of spin
transistor, spin-polarized electrons are injected into the
semiconductor from a ferromagnetic (FM) contact. The
realization of an efficient spin injection has proven to be
a difficult task [6,7]. Only recently, high spin-injection
efficiencies were reported for FM contacts to semiconduc-
tors [8–10]. In nanostructures, however, experimental evi-
dence of spin injection is not as strong and clear [11–15].
Here we show that the SOI in the valence band, quantified
by the spin-orbital splitting �SO, provides an alternative
way to obtain spin-selective tunneling without requiring
FM electrodes.

At cryogenic temperatures, transport through QDs is
dominated by the Coulomb blockade (CB) effect. In the
CB regime, single-hole transport is suppressed and electri-
cal conduction is due to second-order cotunneling (CT)
processes [16]. We consider here the case of a QD with an
odd number of holes and a spin-doublet ground state. A
magnetic field B lifts the spin degeneracy by the Zeeman
energy EZ ¼ g�BB, where g and �B are the hole g factor
and Bohr magneton, respectively. Once the bias voltage
across the QD exceeds the Zeeman energy, jeVj> EZ, the
inelastic CT processes can flip the QD spin, leaving the
QD in the excited spin state; hereafter, e is the elementary
charge (e > 0). The onset of spin-flip inelastic CT mani-
fests itself as a step in the differential conductance,

G ¼ dI=dV, at eV ¼ �EZ [17]. Our measurements reveal
a pronounced asymmetry in the step height of G with
respect to the polarity of V. The asymmetry is found to
depend on the magnitude and direction of B.
This kind of asymmetry has recently been predicted by

Paaske et al., in a model with a rather generic form of the
SOI interaction [18]. In order to understand the observed
dependence of the asymmetry on the direction and magni-
tude of the magnetic field, we developed a theory specific
for the degenerate valence band of a semiconductor with
large �SO.
It is interesting to note that the transport characteristics

of a QD with SOI coupled to normal leads are similar to
those of a QD without SOI coupled to FM leads [19–21].
We illustrate this similarity in Fig. 1, where we consider the
simplest case, in which the Zeeman interaction and the two
spin-selective tunnel contacts have collinear quantization
directions.
We have studied the low-temperature magnetotransport

properties of individual SiGe self-assembled QDs with a
base diameter d � 80 nm and a height w � 20 nm. A
schematic of a typical QD contacted with Al electrodes
is shown in Fig. 2(a). For such QDs, the hole wave function
is generally composed of both heavy holes (HHs) and light
holes (LHs). Because of the confinement and compressive
strain, the degeneracy between the HH and LH branches,
present in bulk at the � point, is lifted. In Fig. 2(b), we
illustrate the interaction between a HH and a LH branch in
the 2D case. The split-off band is far away in energy due to
a large�SO. HHs and LHs are states of angular momentum
3
2 with projections� 3

2 and� 1
2 , respectively. In the QD, the

states consist of a mixture of HH and LH wave functions.
In spite of a predominant HH character, symmetry consid-
erations on the constituent Bloch functions imply that, for a
realistic device geometry, tunneling to and from the QD
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states takes place via the LH wave functions. Since LHs
cannot be factorized into orbital and spin components, an
applied magnetic field induces a spatial variation in the
relative orbital ‘‘weights’’ of the two spins. Therefore, the
ratio of tunneling amplitudes for ‘‘up’’ and ‘‘down’’ spins
will depend on the position of the contacts. In a 2D
geometry, this effect should be highly anisotropic since
only a perpendicular field has an effect on orbital motion.

The measurements have been performed in a dilution
refrigerator with a base temperature of 15 mK. The stabil-
ity diagram,GðVG; VÞ, of a QD device is shown in the inset
of Fig. 2(c). This device has a charging energy of about
1–2 meV, and the orbital level separation is some hundreds
of �eV. The diamond-shape region delimited by dashed
lines highlights the CB regime for an odd number of
confined holes. While G is generally suppressed within
this CB diamond, aG resonance can be identified at V ¼ 0,
providing a clear signature of the Kondo effect [22,23]. At
finite B, this resonance is split by the Zeeman effect as
shown in Figs. 2(c) and 2(d) for perpendicular and parallel
B, respectively.

For perpendicular B [Fig. 2(c)], the splitting of the
Kondo peak is clearly asymmetric with respect to a sign
change in V. The asymmetry in G arises at the onset of
spin-flip inelastic CT (i.e., for jeVj>EZ). For parallel B,
however, the asymmetry is practically absent [Fig. 2(d)].
To further investigate this anisotropy, a sequence of GðVÞ
traces was taken while rotating a 3 T field in a plane
perpendicular to the substrate. The resulting data,
Gð�; VÞ, are shown in Fig. 2(e), with � being the angle
between B and the substrate plane. Along with a variation
in the Zeeman splitting of the Kondo peak, caused by the

�-dependent hole g factor [24], the asymmetry becomes
progressively more pronounced when going from � ¼ 0
(or 180�) towards � ¼ 90�.
The asymmetry observed in GðVÞ can be quantified by

A ¼ G��Gþ
G�þGþ

, where G� ¼ Gð�EZ=eÞ. The detailed Að�Þ
dependence, extracted from Fig. 2(e), is shown in Fig. 3(a).
A � 0 for � ¼ 0 (or 180�) and it increases monotonically
up to 0.2 for � approaching 90�; the AðBÞ dependence is
shown in Fig. 3(b). By sweeping the magnetic field from

FIG. 2 (color online). (a) Schematic of a QD device fabricated
from a SiGe self-assembled nanocrystal grown on a silicon-on-
insulator substrate having a heavily doped handle wafer which is
used as a back gate [24]. (b) Qualitative band diagram of a Ge-
rich SiGe quantum well illustrating the effect of quantum
confinement along the growth (z) direction: HH and LH branches
are split at kx ¼ ky ¼ 0 and anticross at finite kx or ky. In our

system, the splitting energy �z � �2=mw2 is much smaller than
the spin-orbital energy �SO. The red (blue) dots indicate that
many other HH (LH) subbands exist before the first LH
(split-off) subband is encountered. (c) GðVÞ for different per-
pendicular B fields from 0.5 to 3 T. The traces have been shifted
by 0:06� 2e2=h for clarity. Inset: GðVG; VÞ for a 75-mT per-
pendicular field needed to suppress the superconductivity of the
Al electrodes. (VG spans a range of 850 mV and V ranges from
�3:5 to 3.5 mV.) (d) GðVÞ for different parallel fields from 1 to
8 T. The traces have been shifted by 0:06� 2e2=h for clarity.
The Zeeman splitting of the Kondo peak is asymmetric in (c) and
symmetric in (d). (e) Angular dependence of the split Kondo
peak for a fixed VG and B ¼ 3 T. Superimposed GðVÞ traces for
� ¼ 0, 30, 60, and 90 deg. The V-shape dip of G at zero bias
observed in (c)–(e) is caused by electron-electron interaction in
disordered leads [30,31].

FIG. 1 (color online). Spin-selective tunneling in (a) a QD
coupled to FM leads and (b) a QD with SOI coupled to non-
magnetic leads. Upon applying a forward (backward) bias,
jeVj � EZ, the cotunneling processes indicated by the solid
(dashed) arrows become allowed. In both (a) and (b), the tunnel
rate, � � ��jtj2, differs for each Zeeman sublevel of the QD.
In (a), it is the density of states � that brings about the spin
selectivity of the tunneling. In (b), the spin selectivity is caused
by the tunneling amplitude t, which depends on the spinor wave
functions at the point of tunneling. In the valence band, the B
field efficiently makes � spin dependent by affecting the mixing
between heavy and light holes. Since the inelastic CT current
is proportional to �L

*�
R
+ for the forward bias and to �R

*�
L
+ for

the reverse bias, an asymmetric GðVÞ is expected whenever
�L
*�

R
+ � �R

*�
L
+ .
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negative to positive values [see insets in Fig. 3(b)], we
further observe that the asymmetry A obeys the relation

AðBzÞ ¼ Að�BzÞ: (1)

The same qualitative behavior described above was ob-
served in a second device, which did not display Kondo
effect; see Supplemental Material [25]. The asymmetry A
reaches 0.4 at 3 T for that device. We remark that, although
the first device shows larger conductance due to the Kondo
effect, the asymmetry A in both devices is a consequence of
spin-dependent tunnel rates [26].

In order to understand the microscopic origin of the
measured effect, we represent the Luttinger Hamiltonian
[27] as a block matrix in the basis of HH (h) and LH (l)
states,

H ¼ Hhh Hhl

Hlh Hll

 !
: (2)

In Hhh and Hll, we discard all terms that vanish in the 2D
limit (w=d ! 0), whereas inHhl andHlh, we keep only the
leading-order terms. A systematic expansion around the
2D limit is outlined in the Supplemental Material [25].
The blocks Hhh and Hll assume a familiar form

Hhh=ll ¼ �1 � �2

2m
ðk2x þ k2yÞ þ �1 	 2�2

2m
k2z

þ 1

2
�B� 
 gh=l 
BþUðx; yÞ þ Vh=lðzÞ; (3)

where the axes x, y, and z point along the main crystallo-
graphic directions, with z � ½001� being the direction of
the strongest quantization. After the expansion around the
2D limit, the kinetic momentum operators kx and ky con-

tain only the component Bz, whereas kz is independent of
B. In Eq. (3) and below, �1, �2, �3, �, and q denote the
Luttinger parameters [27] and m denotes the bare electron
mass. The Pauli matrices � ¼ ð�x; �y; �zÞ represent the
remaining pseudospin degree of freedom in each block. We
choose the following pseudospin basis [28]:

j "ih ¼ j3=2;�3=2i; j #ih ¼ j3=2;þ3=2i;
j "il ¼ j3=2;þ1=2i; j #il ¼ j3=2;�1=2i:

(4)

In the (x; y; z) frame, the tensors of the g factor are diago-
nal: gh ¼ diagð0; 0;�6�Þ and gl ¼ diagð4�; 4�; 2�Þ,
where we neglected, for simplicity, the terms proportional
to the smallest Luttinger parameter q. The minus sign in
ðghÞzz is due to our basis choice in Eq. (4). In Eq. (3), we
included an in-plane confining potential Uðx; yÞ. The mo-
tion along z is confined to an infinitely deep square well,
with different offsets, Vh and Vl > Vh, due to strain.
The blocks Hhl and Hlh are given by

Hhl ¼ ðHlhÞy ¼ i

ffiffiffi
3

p
�3

m
ðkx�y þ ky�xÞkz: (5)

These blocks intermix HHs and LHs, such that the wave
function of the hole in a given QD state assumes the
general form � ¼ ��h þ 	�l. In terms of the true-spin
states, such a wave function consists of a superposition of
the spin-up ( " ) and spin-down ( # ) states entangled with
the orbital degrees of freedom:

�*ðrÞ ¼ �1ðrÞ " þ
1ðrÞ #;
�+ðrÞ ¼ 
2ðrÞ " þ�2ðrÞ #;

(6)

where * and + denote the components of the Kramers
doublet in the QD. Focusing on the first HH subband, we
obtain by perturbation theory:

�1ðrÞ ¼
ffiffiffi
2

p
�3

m
U�k�c hðx; yÞ

X
n

flnðzÞ hf
l
njkzjfh1 i

Eh
1 � El

n

;


1ðrÞ ¼ U�c hðx; yÞfh1 ðzÞ þ
2�3

m
Zk�c hðx; yÞ

�X
n

flnðzÞ hf
l
njkzjfh1 i

Eh
1 � El

n

;

(7)

and similar expressions for �2ðrÞ and 
2ðrÞ, obtained
from Eq. (7) by replacing U� ! Uþ, k� ! kþ, and
c hðx; yÞ ! c �

hðx; yÞ. In our notation, U� ¼ 	 1ffiffi
2

p �
ðX � iYÞ and k� ¼ 	 1ffiffi

2
p ðkx � ikyÞ. The Bloch amplitudes

X, Y, and Z describe the valence band in the absence of
SOI. In blocks Hhh and Hll, the motion along z separates;
we denote the corresponding eigenenergies and eigenfunc-

tions by Eh=l
n and fh=ln ðzÞ, respectively.

The tunneling amplitudes ti�s are found as

ti�s ¼
X

u¼X;Y;Z

Tuhu;�j�sðriÞi; (8)

where Tu is the coupling strength between Bloch amplitude
u and the lead, and hu; �j�sðriÞi are the projections of the
QD eigenstates�sðrÞ, see Eq. (6), onto the product state of
Bloch amplitude u and spinor j�i. The tunneling ampli-
tudes in Eq. (8) depend on the point of tunneling, ri ¼
rL; rR, the component of the true spin in the lead, � ¼"; # ,

FIG. 3 (color online). Asymmetry parameter A as a function of
(a) � and (b) perpendicular B. We note that, by subtracting the
elastic CT contribution from GðVÞ, A becomes larger than 0.5.
The top inset in (b) shows the evolution of the Kondo peak while
sweeping Bz from �1 to 1 T. The lower inset shows two
characteristic line traces taken at �1 T [gray (red)] and 1 T
(black) demonstrating that AðBzÞ ¼ Að�BzÞ.
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and the component of the Kramers doublet on the dot,
s ¼*; + . We remark that TX, TY , and TZ appear in
Eq. (8) as phenomenological parameters. They depend on
the details of the metal-semiconductor interface and cannot
be determined within the k 
 p theory used here. We find

ti�s /
��1ðriÞ �
2ðriÞ
�
1ðriÞ ��2ðriÞ

 !
; (9)

where ��iðrÞ and �
iðrÞ are obtained from Eq. (7) by replac-
ing Z ! TZ and U� ! 	 1ffiffi

2
p ðTX � iTYÞ.

The spin selectivity of the tunneling is best seen in the
matrix of the tunnel rates, �ss0 ¼ �

P
�t

�
�s��t�s0 . With

�" ¼ �# (case of non-FM leads) we find, up to a common

factor,

�** �*+
�+* �++

 !
/ j ��1j2 þ j �
1j2 ���

1 �
2 þ �
�
1
��2

���
2 �
1 þ �
�

2
��1 j ��2j2 þ j �
2j2

 !
: (10)

At B ¼ 0, time-reversal symmetry requires that

�2ðrÞ ¼ ½�1ðrÞ�� and 
2ðrÞ ¼ �½
1ðrÞ��; (11)

leading to �** ¼ �++ and �*+ ¼ �+* ¼ 0 in Eq. (10).

At B � 0, however, the orbital effect of the B field
modifies the functions �iðrÞ and 
iðrÞ, such that the rela-
tions in Eq. (11) are no longer satisfied. In general, the
matrix �ss0 has nonzero off-diagonal elements. Since it is a
Hermitian matrix, there exists a direction in space,M, such
that a rotation of the quantization axis to the direction ofM
makes the rate matrix diagonal, � ¼ diagð�*;�+Þ, with
�* � �+. To quantify the spin selectivity of the tunneling,

we define

jMj ¼ �* � �+
�* þ �+

: (12)

In respect to transport, M is analogous to the polarization
vector of the FM lead. Indeed, the maximum of spin
selectivity in tunneling from a FM is achieved when the
FM is a half-metal, e.g., �" � 0 and �# ¼ 0. This extreme

case corresponds to M ¼ 1 and can be approached in our
case by increasing Bz.

In order to illustrate the origin of the spin selectivity, we
focus on the special case, TX ¼ TY ¼ 0 and TZ � 0, and
refer to this tunnelingmodel as theZmodel. In theZmodel,
M is parallel to the z axis. Tunneling to the hole states is
possible only due to the admixture of the LH subbands.
Furthermore, in this model, the spin selectivity is deter-
mined by the fact that �
1ðrÞ / k�c hðx; yÞ and �
2ðrÞ /
kþc �

hðx; yÞ, whereas ��iðrÞ � 0. Using this information in

Eqs. (10) and (12), we specify c hðx; yÞ to the Fock-Darwin
states [29]. Therefore, we assume that Uðx; yÞ in Eq. (3) is
given by Uð�Þ ¼ m�!2

0�
2=2, where m� is the effective

mass for in-plane motion, !0 is the oscillator frequency of
the harmonic potential, and �2 ¼ x2 þ y2. For the first two
states (n ¼ 0 and m ¼ 0, �1), we obtain

Mz ¼ � !!c

!2 þ!2
c=4

; (13)

where ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0 þ!2
c=4

q
and !c ¼ eBz=m

�c. For these

states, Mz depends on Bz but not on �; see Fig. 4(a). For
Bz � 0, the contacts will exhibit spin-dependent tunnel
rates with the same polarization value Mz regardless of
position of the tunneling point. In such a case, no asymme-
try in the inelastic CT is expected.
For higher energy levels, Mz may depend on �,

Mz ¼
�
!

!c

fð�Þ þ !c

4!

1

fð�Þ
��1

; (14)

where fð�Þ is given for arbitrary n and m in the
Supplemental Material [25]. We consider further the state
n ¼ 0 and m ¼ 1, for which fð�Þ ¼ 2@=ðm�!�2Þ � 1.
Now Mz depends both on Bz and on �; see Fig. 4(a). The
spin polarization of two contacts positioned arbitrarily on a
QD may differ significantly from each other; see, e.g.,
points �L and �R in Fig. 4(a). The asymmetry in the
inelastic CT is related to �Mz ¼ Mzð�LÞ �Mzð�RÞ � 0.
�Mz increases with Bz [Fig. 4(b)], displaying at the same
time strong dependence on the B-field direction [Fig. 4(c)],
in good qualitative agreement with the results in Fig. 3.
Finally, our theory also explains the symmetry relation

in Eq. (1). On the one hand, the spin-selective part of �ss0 is
proportional to Bz and therefore it changes sign when
flipping the direction of the magnetic field. On the other
hand, the Zeeman energy also changes sign when flipping
the direction of the magnetic field, exchanging thus the
roles of the ground and the excited state. Therefore, A does
not change upon B ! �B.
The described joint effect of SOI and Zeeman splitting

explains our experimental findings. In addition, it opens the
door to an original scheme for measuring Rabi spin oscil-
lations in QDs confining holes. Let us consider a spin-1=2
QD in the CB regime under a perpendicular B of the order
of a few T. In such a case, a transport characteristic of
the type shown in Fig. 2(c) is to be expected. For V ¼ 0,
no current flows through the QD. Yet we suggest that a
finite current could be generated by a resonant rf field (at

FIG. 4 (color online). (a) Tunneling polarizationMz as a func-
tion of the space coordinate� for twoFock-Darwin states (n;m) as
indicated and for !c ¼ 0:1!0. (b) B-field dependence of the
difference �Mz ¼ Mzð�LÞ �Mzð�RÞ, for the values of �L and
�R indicated in (a). (c)�Mz as a function of � for a fixed value of
jBj. The value of jBj corresponds to !c ¼ !0 at � ¼ 90�.
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frequency f ¼ EZ=h) capable of inducing coherent oscil-
lations between the Zeeman-split states of the QD. In fact,
as the excited * state becomes populated it can decay to the
ground + state by an inelastic CT process—a hole tunnels
out of the QD from the * state being replaced by another
hole tunneling into the + state. Because * and + states have
tunnel couplings with opposite asymmetries, in a configu-
ration such as the one depicted in Fig. 1(b) the most
favorable CT relaxation process would involve the transfer
of a hole from the right to the left contact. Hence a net dc
current could be driven by a continuous resonant irradia-
tion. In addition, combining rf bursts with synchronized VG

pulses may enable the coherent control of the QD pseudo-
spin states. In this scheme, well-defined pseudospin rota-
tions would be performed in the deep CB regime (i.e.,
during a negative VG pulse), whereas pseudospin readout
would take place in the CT regime.
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[6] I. Žutić et al., Rev. Mod. Phys. 76, 323 (2004).
[7] E. I. Rashba, Semicond. Sci. Technol. 23, 114015 (2008).
[8] H. C. Koo et al., Science 325, 1515 (2009).
[9] I. Appelbaum et al., Nature (London) 447, 295 (2007).
[10] C. H. Li et al., Nature Commun. 2, 245 (2011).
[11] K. Tsukagoshi et al., Nature (London) 401, 572 (1999).
[12] S. Sahoo et al., Nature Phys. 1, 99 (2005).
[13] K. Hamaya et al., Phys. Rev. B 77, 081302(R) (2008).
[14] F. A. Zwanenburg et al., Nano Lett. 9, 2704 (2009).
[15] E.-S. Liu et al., Nano Lett. 10, 3297 (2010).
[16] S. De Franceschi et al., Phys. Rev. Lett. 86, 878

(2001).
[17] A. Kogan et al., Phys. Rev. Lett. 93, 166602 (2004).
[18] J. Paaske, A. Andersen, and K. Flensberg, Phys. Rev. B 82,

081309(R) (2010).
[19] S. Loth et al., Nature Phys. 6, 340 (2010).
[20] I. Weymann et al., Phys. Rev. B 72, 113301 (2005).
[21] D. Bing, L. Xiao-Lin, and N. J.M. Horing, Commun.

Theor. Phys. 48, 1099 (2007).
[22] D. Goldhaber-Gordon et al., Nature (London) 391, 156

(1998).
[23] O. Klochan et al., Phys. Rev. Lett. 107, 076805

(2011).
[24] G. Katsaros et al., Nature Nanotech. 5, 458 (2010).
[25] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.107.246601 for the
data of the second device and the expansion of the
Luttinger Hamiltonian around the 2D limit.

[26] To exclude experimental artifacts, we verified that A
changes sign upon exchanging the source and drain leads.

[27] See Eq. (45) in J.M. Luttinger, Phys. Rev. 102, 1030
(1956).

[28] The advantage of this choice is that the pseudospin trans-
forms under the time reversal as a spin 1=2, i.e., j "i ! j #i
and j #i ! �j "i.

[29] V. Fock, Z. Phys. 47, 446 (1928); C. G. Darwin, Proc.
Cambridge Philos. Soc. 27, 86 (1931).

[30] B. L. Altshuler and A.G. Aronov, Electron-Electron
Interactions in Disordered Systems (Elsevier,
Amsterdam, 1985).

[31] F. Pierre et al., Phys. Rev. Lett. 86, 1590 (2001).

PRL 107, 246601 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

9 DECEMBER 2011

246601-5

http://dx.doi.org/10.1103/PhysRevB.74.165319
http://dx.doi.org/10.1103/PhysRevB.74.165319
http://dx.doi.org/10.1126/science.1148092
http://dx.doi.org/10.1038/nature09682
http://dx.doi.org/10.1063/1.102730
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1088/0268-1242/23/11/114015
http://dx.doi.org/10.1126/science.1173667
http://dx.doi.org/10.1038/nature05803
http://dx.doi.org/10.1038/ncomms1256
http://dx.doi.org/10.1038/44108
http://dx.doi.org/10.1038/nphys149
http://dx.doi.org/10.1103/PhysRevB.77.081302
http://dx.doi.org/10.1021/nl901184m
http://dx.doi.org/10.1021/nl1008663
http://dx.doi.org/10.1103/PhysRevLett.86.878
http://dx.doi.org/10.1103/PhysRevLett.86.878
http://dx.doi.org/10.1103/PhysRevLett.93.166602
http://dx.doi.org/10.1103/PhysRevB.82.081309
http://dx.doi.org/10.1103/PhysRevB.82.081309
http://dx.doi.org/10.1038/nphys1616
http://dx.doi.org/10.1103/PhysRevB.72.113301
http://dx.doi.org/10.1088/0253-6102/48/6/028
http://dx.doi.org/10.1088/0253-6102/48/6/028
http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1103/PhysRevLett.107.076805
http://dx.doi.org/10.1103/PhysRevLett.107.076805
http://dx.doi.org/10.1038/nnano.2010.84
http://link.aps.org/supplemental/10.1103/PhysRevLett.107.246601
http://link.aps.org/supplemental/10.1103/PhysRevLett.107.246601
http://dx.doi.org/10.1103/PhysRev.102.1030
http://dx.doi.org/10.1103/PhysRev.102.1030
http://dx.doi.org/10.1007/BF01390750
http://dx.doi.org/10.1017/S0305004100009373
http://dx.doi.org/10.1017/S0305004100009373
http://dx.doi.org/10.1103/PhysRevLett.86.1590

