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We carry out the first holographic calculation of a fermionic response function for a strongly coupled

d ¼ 3 system with an explicit D ¼ 10 or D ¼ 11 supergravity dual. By considering the supersymmetry

current, we obtain a universal result applicable to all d ¼ 3 N ¼ 2 SCFTs with such duals. Surprisingly,

the spectral function does not exhibit a Fermi surface, despite the fact that the system is at finite charge

density. We show that it has a phonino pole and at low frequencies there is a depletion of spectral weight

with a power-law scaling which is governed by a locally quantum critical point.
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Introduction.—The AdS/CFT correspondence provides
a powerful framework for studying strongly coupled quan-
tum field theories and has recently been used as a theoreti-
cal laboratory for studying condensed matter systems.
Some of the most interesting ‘‘AdS/CMT’’ studies have
focused on calculating fermionic response functions, not
least in the hope of obtaining a better understanding of the
deeply vexing non-Fermi liquids that are seen in a variety
of materials at finite charge density including the heavy-
fermion and high-Tc cuprate superconductors.

The ground-breaking works [1–4] gave the first such
‘‘holographic’’ calculations of fermion spectral functions
using phenomenological or ‘‘bottom-up’’ models. The
AdS/CFT correspondence states that certain classes of field
theories have specific dual gravitational descriptions, de-
termined by their realization in string theory. In the
bottom-up approach, rather than identify a specific string
dual, one simply postulates a particular theory of gravity
with some simple matter content and couplings and as-
sumes that it captures the essential features of potential
dual field theories. Specifically, the original papers consid-
ered the Dirac equation for a minimally coupled spin- 12
fermion with mass m and charge q in the gravitational
background of a four-dimensional AdS–Reissner-
Nordström (AdS4-RN) black brane. With appropriate
boundary conditions, this encodes a fermionic response
function at finite temperature and chemical potential. It
was shown that the resulting spectral function can exhibit a
Fermi surface with non-Fermi liquid scaling for certain
values of m and q. It can also have an interesting oscil-
latory behavior, periodic in the logarithm of the frequency.
While the existence of these Fermi surfaces depends on the
full AdS4-RN geometry, it was shown in [4] (see also [5]),
that their low-frequency scaling behavior can be beauti-
fully understood as a consequence of the AdS2 � R2 ‘‘IR’’
region of the spacetime that is dual to an emergent one-
dimensional conformal field theory (CFT).

The validity of phenomenological models rests on the
hope that either somewhere in the landscape of string

theory backgrounds the model will be realized exactly,
and hence the holographic calculations relate to a specific
dual field theory, or alternatively, the gravitational model
may only be realized approximately but the features are
sufficiently robust to capture properties of some actual field
theory. Although significantly more difficult, it is clearly
essential to study ‘‘top-down’’ models in which one is
carrying out holographic calculations within a explicit
string theory setting and hence obtaining results for bona
fide dual field theories.
The purpose of this Letter is to communicate the first

such calculations of fermion spectral functions in ten- or
eleven-dimensional supergravity, the low-energy limit of
string or M theory. The most robust and controlled ex-
amples of holography are for supersymmetric conformal
field theories (SCFTs) and we will restrict our consider-
ations to this class. Remarkably, as we will explain, our
results will be valid not just for a single field theory but for
an infinite number.
We analyze the response function of the universal spin- 32

supersymmetry current, or ‘‘supercurrent’’, in the general
infinite class of d ¼ 3, N ¼ 2 SCFTs that have dual
gravitational backgrounds of the form AdS4 �M in either
D ¼ 10 or D ¼ 11 supergravity. The supercurrent, the
energy-momentum tensor and the global Abelian
R-symmetry current of the SCFT comprise a supermulti-
plet. It is possible to isolate this universal sector from all
other operators because, from the gravitational point of
view, given a Kaluza-Klein (KK) reduction of D ¼ 10 or
D ¼ 11 supergravity on any appropriate manifold M, one
can then consistently truncate an infinite tower of fields
leaving minimal N ¼ 2 D ¼ 4 gauged supergravity [6].
The field content of this gauged supergravity consists of a
metric, a gauge field and a Dirac gravitino, which are
precisely dual to the energy-momentum tensor, the global
Abelian R-symmetry current and the fermionic supercur-
rent of the SCFT, respectively.
We consider the electrically charged AdS4-RN black-

brane solution which provides the dual description of the
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SCFTs at finite temperature T and chemical potential �
with respect to the global R symmetry, both of which break
the supersymmetry. It is possible that the SCFT undergoes
a phase transition at some critical temperature Tc, which
will involve other KK fields, and if it does then the
AdS4-RN description will be valid only for temperatures
above Tc. It is an open question whether or not there are
SCFTs which do not have such phase transitions and hence
are described by the extremal AdS4-RN black brane all the
way down to T ¼ 0.

We calculate the supercurrent response function by solv-
ing the linearized gravitino equations in the AdS4-RN
background, as a function of frequency ! and momentum
k � jkj. We find that there is no log-periodic behavior, in
contrast to the bottom-up model results. Furthermore, it
does not have a Fermi surface, i.e., a quasiparticle pole
with ! ¼ 0 and k � 0, as one might have expected for
matter at finite charge density [7]. This surprising result
underscores the importance of the top-down approach.
Further study will be required to determine whether a
Fermi surface will be seen in different response functions
or whether they are in fact absent in these holographic
theories.

The spectral function has other interesting features. It
has a ‘‘phonino pole’’ [8–10] located at !þ� ¼ 0 and
k ¼ 0, reflecting the broken supersymmetry. We also find a
depletion of spectral weight at low frequencies, as seen in
[11,12], where bulk dipole couplings were considered in a
bottom-up context. In [11] this behavior was interpreted as
a dynamical gap dual to something akin to a Mott insulator.
A subsequent discussion of this interpretation can be found
in [12]. Here we will show that at zero temperature the
spectral function vanishes when ! ¼ 0. Furthermore, the
low-frequency behavior is weakly gapped (and thus unlike
a Mott gap) and determined by an emergent one-
dimensional, ‘‘locally quantum critical’’, CFT, dual to the
IR AdS2 � R2 part of the geometry. This behavior persists,
albeit in a softened way, for nonzero temperatures.

In [13] we present more details of the rather technical
calculations as well as some additional results.

Supercurrent response function.—Let S� be the con-
served supercurrent operator of the d ¼ 3 SCFT. It is a
complex vector spinor, where � is the vector index, has
conformal dimension � ¼ 5

2 , and is charged under the

global R symmetry. We will calculate the retarded corre-
lation function G��ðpÞ ¼ hS�ðpÞ �S�ð0ÞiRet at finite tem-

perature and chemical potential, exploiting the fact that
the expectation value of the supercurrent in the presence of
a vector-spinor source a�, at linearized order, is given by

hS�i ¼ iG��a
�: (1)

The supercurrent is conserved and, because we have an
SCFT, gamma traceless: p�hS�i ¼ ��hS�i ¼ 0 where ��

are d ¼ 3 gamma matrices. Since we are considering the
SCFT at finite �, which can be viewed as weakly gauging

the R symmetry, we have p� ¼ ð ~!;kÞ with ~! � !þ�.
The source can be taken to satisfy

��a� ¼ 0; �a� ¼ ð��
� � 1

3���
�Þp��; (2)

where the second equation arises from the weak gauging of
the supersymmetry. Of course the supercurrent itself, and
hence its expectation value, is gauge invariant.
The four independent components of G�� can be ex-

tracted by introducing a basis of 3D vector spinors eðiÞ� ,

i ¼ 1, 2, satisfying ��eðiÞ� ¼ p�eðiÞ� ¼ 0 and the normal-

ization condition �eðiÞ� eðjÞ� ¼ �2p2�ðiÞðjÞ. We can then write

G�� ¼ tije
ðiÞ
� �eðjÞ� , where the tij are the four independent

components of G��. The d ¼ 3 SCFT is invariant under

spatial rotations and parity. We can use this to choose p� ¼
ð ~!; k; 0Þ, where k � jkj, and show that t12 ¼ t21 ¼ 0 and
t22ð!; kÞ ¼ t11ð!;�kÞ. Thus the correlation function is
determined by a single function t11. Our objective is to
calculate t11ð!; kÞ, and more specifically the spectral func-
tion, Að!; kÞ, defined as

Að!; kÞ � Im t11ð!; kÞ: (3)

Holographic calculation.—
(i)N ¼ 2 gauged supergravity in D ¼ 4: The field con-

tent of minimal N ¼ 2 gauged supergravity in D ¼ 4
[14,15] consists of a metric g��, a gauge field A� and a

single Dirac gravitino c �. This theory admits the

AdS4-RN black-brane solution given by

ds2 ¼ �fdt2 þ dr2

f
þ r2

‘2
ðdx2 þ dy2Þ; A ¼ �dt;

(4)

with

f ¼ r2

‘2
� rþ

r

�
r2þ
‘2

þ ‘2�2

�
þ ‘2�2 r

2þ
r2

� ¼ �‘

�
1� rþ

r

�
:

(5)

The location of the horizon is r ¼ rþ. The temperature of
the black brane is given by T ¼ ð3rþ=‘2 � ‘2�2=rþÞ=4	.
When T ¼ 0, as r ! rþ the black-brane solution ap-
proaches AdS2 � R2 with the radius of the AdS2 given

by Lð2Þ ¼ ‘=
ffiffiffi
6

p
.

We will study the equation of motion of the gravitino
at the linearized level in the AdS4-RN background (4) and
(5). One can use the local superysmmetry to fix the gauge
D�c � ¼ ��c � ¼ 0, where �� are D ¼ 4 gamma matri-

ces, and we then obtain

ð 6D�m1� 1
2iF

�����Þc 
 þ iF �����
c � ¼ 0; (6)

where D � r� iqA, F ¼ dA and q ¼ �m ¼ 1
‘ .

There are residual gauge transformations, which we fix
later. We note the presence of Pauli terms.
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(ii)Asymptotic behavior of solutions: Under the AdS/
CFT correspondence, to calculate G�� one solves the

linearized equations of motion for the dual gravitino field
in AdS4-RN, imposing ingoing boundary conditions at the
horizon, and studies the asymptotic expansion of the field
as r ! 1. This describes a linearized perturbation of the
CFT, where the r��3 term encodes the source a� and
the r�� term encodes the resulting expectation value of
the operator hS�i.

We will assume throughout that the time and space
dependence of the gravitino is given by e�i!tþik�x. As r !
1, schematically, we have

c ¼ r�1=2c�1=2 þ r�3=2c�3=2 þ r�5=2c�5=2

þ r�7=2c�7=2 þ r�7=2 logr��7=2 þ . . . ; (7)

where c�1=2 etc., are functions of three-momentum p�̂ ¼
ð ~!; k; 0Þ. There is an analogous expansion for the residual
gauge transformations, fixed by two parameters "1=2 and

"�7=2 appearing at orders r1=2 and r�7=2, respectively.

It is then natural to decompose all these components
under the asymptotic d ¼ 3 Lorentz symmetry that appears
as r ! 1. Using that gauge conditions and residual gauge
transformations, one finds that the solution is completely
determined by a pair of d ¼ 3 vector spinors a� and b�
satisfying

��a� ¼ 0; �a� ¼ ð��
� � 1

3���
�Þp��;

��b� ¼ 0; p�b� ¼ 0; �b� ¼ 0;
(8)

where � is a d ¼ 3 spinor that determines "1=2. To order

r�3=2 the expansion is completely determined by a�. Terms

in a� also appear at order r�5=2 and this leads to some
ambiguity in defining the new independent data b�, that
appears at this order. However, it can be fixed uniquely
using the second set of conditions in (8). The full expan-
sion requires the introduction of another spinor in c�7=2,

but this data can be gauged away using "�7=2.

Since the supercurrent is a � ¼ 5=2 operator in the dual

d ¼ 3 SCFT, the source is fixed by the r�1=2 expansion

data and the expectation value by the r�5=2 expansion data,
and hence can be identified with a� and b�, respectively.
Furthermore, (1) allows us to write b� ¼ iG��a

� and we

can show that

t11 ¼ � i �eð2Þ� b�

2p2 �eð1Þ� a�
: (9)

This is invariant under residual gauge transformations.
(iii)Solving the gravitino equation: A convenient way to

solve the gravitino Eq. (6) in theAdS4-RN background and
impose the ingoing boundary conditions, is to dimension-
ally reduce on the two spatial directions x, y and decom-
pose into spin (1,1) representations. Subject to the gauge
conditions ��c � ¼ D�c � ¼ 0 there are 8 independent

complex components in c �. After dimensional reduction

these can be written in terms of functions of r labeled uðsÞ

and vðsÞ, where s ¼ � 3
2 ;� 1

2 ;
1
2 ;

3
2 refer to the helicity of the

spin (1,1) representation. The two sets of functions, uðsÞ

and vðsÞ, are parity eigenstates and map into each other
under a rotation by 	 in the ðx; yÞ plane.
Using this decomposition the gravitino Eqs. (6) in the

AdS4-RN background (4) are equivalent to a system of

linear ODEs for uðsÞ and vðsÞ. The parity and rotational

symmetries imply that the ODEs for uðsÞ and vðsÞ do not
mix and map into to each other if one replaces k ! �k. At
finite temperature the horizon at r ¼ rþ is a regular sin-
gular point of the ODEs and we can develop a Frobenius
expansion. Writing �sð!Þ ¼ sþ i!

2	T the solutions have

leading-order behavior

uðsÞ ¼ ðr� rþÞ�½�sð!Þ�=ð2ÞuðsÞ0 þ . . . ; s ¼ 3
2;�1

2;

uðsÞ ¼ ðr� rþÞ�sð!Þ=2uðsÞ0 þ . . . ; s ¼ 1
2;�3

2;
(10)

where the uðsÞ0 are four arbitrary complex coefficients. Thus

the ingoing boundary condition at the horizon is given by

uð1=2Þ0 ¼ uð�3=2Þ
0 ¼ 0. The residual gauge transformations

allows us to gauge away either uð�1=2Þ
0 or uð3=2Þ0 . The

situation for T ¼ 0 is slightly more subtle and is explained

in [13]. It can be shown that if ðuð�sÞÞ� is a solution then so
is uðsÞ. This is related to the action of time reversal and will
be useful below.
Having solved the gravitino equations in this way, one

can rewrite c � in terms of uðsÞ and vðsÞ. compare with the

asymptotic expansion, and obtain the boundary data a� and
b�. We then obtain t11 from (9).
Results.—We now summarise some results for the spec-

tral function based on solving the ODEs numerically.
As illustrated in Fig. 1, the most prominent feature for

T � 0 is the large peak near ~! ¼ 0 associated with a pole
of G�� at ð ~!; kÞ ¼ ð0; 0Þ. This long-wavelength Goldstino

pole has been discussed before in a hydrodynamical con-
text. In supersymmetric theories in addition to ordinary
sound waves there are weakly damped propagating ‘‘super-
sound’’ waves, or ‘‘phoninos’’ [9,10]. At � ¼ 0, this gives
a pole in G�� at ð!; kÞ ¼ ð0; 0Þ [10], and was analyzed

holographically in [8].
In our case � � 0, and the weakly gauged R-symmetry

means the phonino pole is shifted to ð ~!; kÞ ¼ ð0; 0Þ, ex-
actly as in Fig. 1. For higher values of k, this peak dis-
appears. At the same time the spectral weight gets
redistributed to positive !, where a bump develops. At
low temperatures and small ! there is a region of the order
of the chemical potential, where the density of states is
depleted. An analogous feature was interpreted in [11] as a
hard (Mott) gap.
Some results for the spectral function for T ¼ 0 are

shown in Fig. 1. The phonino pole is still present at
ð ~!; kÞ ¼ ð0; 0Þ, much as in the top panel. We also see
that the spectral function vanishes at ! ¼ 0 for all values
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of k. In fact there is a scaling of the form A / !2�k

corresponding to a soft power-law gap.
We can derive this behavior analytically. Indeed, by the

method of matched asymptotic expansions, as in [4], at
T ¼ 0 and at leading order in ! we can show

t11ð!; kÞ ¼ t11ð0; kÞ½1þ CðkÞGð!; �kÞ þ � � ��; (11)

where

Gð!; �kÞ

¼ e�i	�k
�ð�2�kÞ
�ð2�kÞ

�ð�1� i
2
ffiffi
3

p þ �kÞ
�ð�1� i

2
ffiffi
3

p � �kÞ
ð2!Lð2ÞÞ2�k (12)

with �k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7
12 þ k2

2�2

q
. The function CðkÞ is independent of

! and depends on the UV data of the system. Note that
since �k is real, for any k, there is no periodic log oscil-
liatory behavior as seen in the bottom-up models.

If t11ð0; kÞ is real then we can immediately extract the
scaling relation for the spectral function

Að!; kÞ / !2�k ; (13)

for small !, exactly as we see in our numerical results.

The reality of t11ð0; kÞ follows from the uðsÞ ! ðuð�sÞÞ�

symmetry we mentioned above. Thus the vanishing of
the spectral weight at ! ¼ 0 and T ¼ 0 is not a hard
Mott-like gap but rather a power-law, characteristic of a
local massless sector of states associated with the AdS2
factor of the bulk near-horizon region.
Finally, it would be worthwhile to extend the results of

this Letter and [13] to study fermion spectral functions in
the more involved top-down models of [16]. This would be
particularly interesting as they include nonsupersymmetric
CFTs whose gravity duals are known to be perturbatively
stable. Furthermore, it would be interesting to elucidate the
impact of the superfluid phase [17,18] at low temperatures
and also to see whether the additional bulk fermions reveal
any underlying Fermi surface.
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FIG. 1 (color online). The spectral function Að!; kÞ The top
panel is for T=� ¼ 0:44 and momenta k‘ 2 ð0:1; 1:1Þ, with
larger values of k in darker shades of gray. The bottom panel
is for T ¼ 0 and k‘ 2 ð1:2; 2:1Þ.
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