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We present a statistical mechanical calculation of the thermodynamical properties of (nonrotating)

isolated horizons. The introduction of the Planck scale allows for the definition of a universal horizon

temperature (independent of the mass of the black hole) and a well-defined notion of energy (as measured

by suitable local observers) proportional to the horizon area in Planck units. The microcanonical and

canonical ensembles associated with the system are introduced. Black hole entropy and other thermo-

dynamical quantities can be consistently computed in both ensembles and results are in agreement with

Hawking’s semiclassical analysis for all values of the Immirzi parameter.
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Black holes (BHs) are remarkably simple gravitational
systems for distant observers so long as one neglects
quantum effects. However, for @ � 0 their physical behav-
ior remains an open question whose complete answer
requires a full-fledged quantum gravity theory. The most
difficult challenge is perhaps to unravel the physics close to
the classical singularity dressed by the event horizon. The
quantum gravity effects are also felt by observers outside
the event horizon, as clearly indicated by Hawking’s semi-
classical calculations [1] which show that a generic BH
radiates as a perfect black body at Hawking temperature
TH proportional to its surface gravity and has an entropy

S ¼ A=4‘2p where ‘p ¼ @
1=2 (in units G ¼ c ¼ 1) is the

Planck length and A is the classical area of the event
horizon. The analysis of these thermodynamic aspects of
BHs is well within the reach of the existing developments
in quantum gravity.

In fact, an account of the thermal properties of BHs from
the statistical mechanical treatment of the microscopic
germs arising in the underlying quantum theories of gravity
has now become a standard benchmark for testing those
theories. In this Letter we attack this problem from the
viewpoint of loop quantum gravity (LQG).

The problem of computing black hole entropy in the
framework of LQG has a long history (see [2] and refer-
ences therein). Despite some small differences among
various treatments, one common viewpoint has surely
emerged, which is, that in order to find agreement with
Hawking’s semiclassical results, one must fix the Immirzi
parameter � (a dimensionless constant that labels various
inequivalent kinematic quantizations of LQG) to a critical
value �0. Although logically viable, this peculiar tuning of
� has arguably become the Achilles’ heel of the LQG
analysis. In this Letter we propose an alternative analysis
of black hole entropy from LQG whose main merit is to
reconcile Hawking’s semiclassical results with the statisti-
cal mechanics treatment of LQG without having to fix the
Immirzi parameter.

The key conceptual input is that the first law of black
hole mechanics needs to be modified from the classical
form dE1 ¼ �dA=ð8�Þ þ work terms to

dE1 ¼ �

8�
dAþ�1dN þ work terms; (1)

where � is the surface gravity of the event horizon, E1 is
the BH mass measured by the stationary observers at
infinity [3], and the second term originates naturally from
the underlying quantum geometry description of the BH
horizon where the integer N refers to the number of topo-
logical defects in the quantum isolated horizon (IH) and
plays the role of a quantum hair for the BH. Then the
quantity � plays the role of chemical potential. As can be
immediately seen, the above modification of the first law is
fully consistent with standard results for Schwarzschild
BH if [4] E1 ¼ M, �1 ¼ ��ð�ÞT1, and

S ¼ A

4‘2p
þ N�ð�Þ; (2)

where A is the classical area of IH and �ð�Þ is some
function of the Immirzi parameter. In the following we
will show that the above first law and the entropy (2) follow
directly from the statistical mechanics of the basic quan-
tum excitations of IH in LQG. The Immirzi parameter is
completely free and enters the entropy formula only
through the chemical potential.
In the following discussion, we use standard coordinates

in which the Schwarzschild metric takes the form

ds2 ¼ �
�
1� 2M

r

�
dt2 þ

�
1� 2M

r

��1
dr2 þ r2d�2: (3)

One expects that in the semiclassical limit a spherically
symmetric quantum black hole of large mass M in a sta-
tionary state is well approximated by a Schwarzschild BH
having a test field in the Hartle-Hawking vacuum state.
Equilibrium is sustained by a steady incoming flux of
radiation at Hawking temperature TH ¼ ‘2p=ð8�MÞ past
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null infinity I� and a steady outgoing flux of radiation at
the same temperature at future null infinity Iþ. The tem-
perature measured by a stationary observer in the interior is
the local Unruh temperature

TðrÞ ¼ TH

�
1� 2M

r

��1=2
: (4)

Classically, this temperature diverges at the BH horizon.
This is due to the infinite blueshift of the asymptotic energy
scales at the horizon. However, in the quantum theory there
is a universal (independent of massM) local temperature at
the horizon. More precisely, for an observer at r ¼ 2Mþ �

the proper distance from the horizon is ‘ ¼ 2ð2M�Þ1=2 and
from (4) the local temperature is

TU ¼ ‘2p
2�‘

: (5)

Classically, ‘ ! 0 as � ! 0. Quantum mechanically, the
closest proper distance ‘ must be given by the smallest
length scale that the quantum geometry can probe and
hence it must be set by the underlying quantum theory of
gravity. For example, in string theory ‘must be determined
by the string tension �0; in LQG ‘� ffiffiffiffi

�
p

‘p. In the approxi-

mation of quantum field theory on curved spacetimes it can
be seen that backreaction effects produce an apparent
horizon at distance of order Planck outside the event
horizon in the large BH limit [5]. Remarkably, none of
the physical result depends on this scale, so we do not fix it
anywhere. Nevertheless, the existence of such a scale
makes the local temperature (5) measured by a stationary
observer closest to the BH horizon universal. This is the
relevant temperature for the quantum theory of isolated
horizon and in its own spirit we call it the Unruh
temperature.

The usual global notion of event horizon needs to be
revised in the context of quantum gravity. The very fact
that BHs radiate in the semiclassical regime makes the
definition of event horizon as the boundary of the past of
future null infinity unphysical; Ref. [6] provides a clear
description of this viewpoint in a simplified setting. In
LQG this issue is resolved because one uses isolated
horizons [7]. IH captures the main physical and local
features of BH event horizons while being of a quasilocal
nature itself. In particular, isolated horizons satisfy a qua-
silocal version of the first law [8]

dEIH ¼ �IH

8�
dAþ work terms; (6)

where EIH is a suitable quasilocal energy function and �IH

is a local notion of IH surface gravity. Neither EIH nor �IH

are completely determined in the IH framework. More
precisely, there are infinitely many possible first laws
according to the choice of �IH as a function of the extensive
variables entering the first law which when integrated
provides a definition of EIH.

This indeterminacy can only be eliminated by an appro-
priate physical input which makes an IH the closest repre-
sentative of a BH spacetime. In the spherically symmetric
case, this input is provided by the Schwarzschild
spacetime. Indeed, there is a natural quasilocal energy
that one can associate with the stationary observers in
Schwarzschild spacetime. The four velocity of such an

observer is ua ¼ �a=j� � �j1=2, where � is the timelike
Killing vector field [� ¼ @t in the coordinate system (3)].
Then the Komar mass integral gives

Er ¼ � 1

8�

Z
Sr

�abcdrcud; (7)

where Sr is a spherical section of the r ¼ const surface.
The integral gives

E ¼ 2M2

‘
¼ A

8�‘
(8)

when evaluated at r ¼ 2Mþ �, where ‘ ¼ 2
ffiffiffiffiffiffiffiffiffiffi
2M�

p
(see

[9] for a general discussion involving general stationary
BHs). This gives a natural notion of energy close to the BH
horizon. Since area is the only geometric quantity here, it is
no wonder that the local energy is determined by the area
where 16�‘ provides the appropriate scaling. The above
analysis provides a clear-cut justification for the choice of
area in the definition of microcanonical ensembles used in
[10], and more profoundly recently in [11].
From now on we study the statistical mechanical prop-

erties of quantum IHs. As follows from the basic LQG
treatment, we consider a quantum IH to be a gas of
its topological defects, henceforth called punctures. Using
(8), we take the appropriately scaled IH area spectrum as
the energy spectrum of the gas. Using the LQG area
spectrum [12]

Ĥjj1; j2; . . .i ¼
�
‘2g
‘

X
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpðjp þ 1Þ

q �
jj1; j2; . . .i; (9)

where jp taking values from the set f1=2; 1; 3=2; . . .g is the
spin associated with the pth puncture and we used the
shorthand notation ‘2g ¼ �‘2p.

The microcanonical ensemble is defined by an energy
E ¼ A=ð8�‘Þ where A is the classical area of the IH and a
number of punctures N. A quantum configuration fsjg is
given by the number of punctures sj carrying spin-j for all

possible values of j. Each configuration must obey two
constraints:

C1:
X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

q
sj ¼ A

8�‘2g
; C2:

X
j

sj ¼ N:

The number of states d½fsjg� associated with a configura-

tion fsjg is
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d½fsjg� ¼
�X

k

sk

�
!
Y
j

ð2jþ 1Þsj
sj!

: (10)

We look for the configuration that maximizes the entropy
logðd½fsjg�Þ subject to the above two constraints. This

configuration is obtained from the variational equation

	 logðd½fsjg�Þ � 
	C1 � �	C2 ¼ 0; (11)

where 
;� are the two Lagrange multipliers. Under
Stirling’s approximation, this gives the dominant
configuration

sj
N

¼ ð2jþ 1Þe�

ffiffiffiffiffiffiffiffiffiffiffi
jðjþ1Þ

p
��: (12)

Summing over all spin values j and using C2, we get

1 ¼ e��
X
j

ð2jþ 1Þe�

ffiffiffiffiffiffiffiffiffiffiffi
jðjþ1Þ

p
: (13)

Denoting by �d the value of d½fsjg� for the dominant con-

figuration, the entropy S ¼ log �d is given by

S ¼ 

A

8�‘2g
þ �N;

where �ð�Þ ¼ log

�X
j

ð2jþ 1Þe�

ffiffiffiffiffiffiffiffiffiffiffi
jðjþ1Þ

p �
:

(14)

From � ¼ @S=@EjN we obtain the Lagrange multiplier 

as a function of �, namely, 
 ¼ �‘2g=‘. Finally, setting

T ¼ TU and using (5) we get

S ¼ A

4‘2p
þ N�ð�Þ;

where �ð�Þ ¼ log

�X
j

ð2jþ 1Þe�2��
ffiffiffiffiffiffiffiffiffiffiffi
jðjþ1Þ

p �
:

(15)

The function �ð�Þ appears at several places in what fol-
lows. The chemical potential at T ¼ TU is given by

� ¼ �TU

@S

@N

��������E
¼ � ‘2p

2�‘
�ð�Þ; (16)

which depends on the fiducial length scale ‘ and the
Immirzi parameter.

For further discussion it is instructive to consider the
same system in the canonical ensemble. The canonical
partition function is given by

Z ¼ X
fsjg

Y
j

N!

sj!
ð2jþ 1Þsje��sjEj ; (17)

where Ej ¼ ‘2g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

=‘. A simple calculation gives

logZ ¼ N log

�X
j

ð2jþ 1Þe��Ej

�
; (18)

and the average energy hEi ¼ � @
@� logZ at T ¼ TU is a

function of N only; this relates the number of punctures to
the area

N ¼ � A

4‘2g�
0ð�Þ : (19)

Note that for all values of � the number of punctures 0 �
N � A

4
ffiffi
3

p
�‘2g

. Moreover, for a fixed macroscopic area A, the

number of punctures grows without limit as � ! 0 while it
goes to zero as � ! 1. For the entropy we get

S ¼ ��2 @

@�

�
1

�
logZ

�
¼ logZþ �

A

8�‘
: (20)

At T ¼ TU, this expression is identical to the microcanon-
ical entropy (15). Basic formulas allow for the calculation
of the energy fluctuations which at the Unruh temperature
are such that ð�EÞ2=hEi2 ¼ Oð1=NÞ. The specific heat at
TU is C ¼ 2N‘�‘�2

p �00ð�Þ, which is positive. This implies

that as a thermodynamic system the IH is locally stable.
The specific heat tends to zero in the large � limit for fixed
N and diverges as @ ! 0.
We now conclude with some discussion of our results.
Hawking radiation is a global feature of spacetimes in

which matter undergoes gravitational collapse and settles
down to some (semiclassical) stationary BH geometry.
Quantum isolated horizons are ignorant about the geome-
try outside the horizon and hence are not expected to
reproduce the thermodynamical properties of a global
BH spacetime without additional inputs. Ideally, in LQG
calculations, one should put by hand the information of the
semiclassical quantum states approximating the global BH
geometry outside the IH as a physical input (such states are
expected to exist in the large BH-mass limit). Here we
brought in some semiclassical inputs to the statistical treat-
ment of quantum IH by setting the temperature of the IH at
the appropriate blueshifted Hawking temperature (5) and
using the appropriate quasilocal energy (8). When these
ingredients are incorporated into the entropy calculations,
the consequences are striking.
Our result (20) for the entropy S ¼ �Eþ �N is fully

compatible with the semiclassical result of Bekenstein and
Hawking even for a continuous range of the Immirzi
parameter. This follows from the fact that ð@S=@EÞN ¼ �
must be the inverse temperature (5) of the horizon and
ð@S=@NÞE ¼ �must be related to the chemical potential of
the horizon. These suggest that the correct first law of a
quantum IH mechanics should be dE ¼ TdSþ�dN,
where the new term comes from the quantum hair N that
arises from the underlying quantum geometry of IH, or
more precisely from LQG. In addition to the total area of
the horizon, the total number of punctures (topological
defects on the membrane where surface degrees of freedom
live) is also a Dirac observable, which must play a role in
the statistical description of the horizon.
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While comparing our entropy with the semiclassical
entropy one should note that the latter is inferred from an
assumed form of the first law; i.e., the entropy S has to be
such that ð@S=@E1Þ... ¼ �1 holds, where the dots refer to
other possible macroscopic variables that must be kept
fixed. Once one equates �1 ¼ �Hawking and E1 ¼ EADM

(where ADM is Arnowitt-Deser-Misner), one gets the
desired expression S ¼ A=4‘2p. Our entropy fully complies

with this analysis. The hair N, whose origin is purely
quantum geometry, is held fixed in the semiclassical analy-
sis. Hence, the term �ð�ÞN is only an additive constant to
the entropy, and at the semiclassical level, our entropy is
the same as the one of Bekenstein. This closes the gap
between the semiclassical analysis and the one of the
statistical mechanics of IH.

Our chemical potential � ¼ �T�ð�Þ is negative for
small values of �< �0. So long as � � 0, we can lower
the energy of the horizon at some fixed entropy by adding
more punctures. That means, large number of punctures is
favored. Also, for some fixed energy, the entropy max-
imizes for maximum number of punctures. So large num-
ber of punctures is also favored entropically. This shows
that N � 1 is the right semiclassical limit of geometry.
Close to the value �0 of the Immirzi parameter, the chemi-
cal potential tends to zero, and for larger values it becomes
positive. For �> �0, a quantum theory may very well exist
mathematically, but it seems not to exhibit the right semi-
classical behavior.

The hair N has its origin in the underlying quantum
geometry, and hence, the first law of classical isolated
horizons does not possess this term. Classically, the only
natural value of the chemical potential is zero, which

implies 1 ¼ Pð2jþ 1Þ exp½�2��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp �. This fixes

the value of the Immirzi parameter reported earlier and
from (20) the entropy S ¼ A=4‘2P. This result (with some
mild differences depending upon the IH model) was ob-
tained in all previous counting [13]. Our present result can
clearly reproduce these earlier results. However, it differs
in many important ways from the existing viewpoint. First
of all, in (20) the Immirzi parameter does not appear as a
multiplicative constant. It appears in an additive correction
to the semiclassical expression. This additive term is the
quantum correction to the semiclassical entropy induced
by the quantum hair N. This result is more robust in the
sense that the semiclassical results are reproduced even
when � does not exactly obey the constraint and the
chemical potential is not exactly zero. Even to reproduce
all earlier results one only requires the chemical potential
to be only close to zero; more precisely, N ! 1 and ��
Oð1=NÞ, so that the quantum correction to the entropy
�N �Oð1Þ.

The quantum statistical mechanics of isolated horizon is
independent of the ensembles (we have shown the equiva-
lence of microcanonical and canonical ensembles). This is
an important characteristic of a statistical system in ther-

mal equilibrium when some appropriate thermodynamic
limit is taken. In general, in the absence of such a well-
defined limit in gravity, one expects that a black hole as a
statistical system may exhibit features that are ensemble
dependent. Moreover, the thermodynamic description is
ill-defined because, for example, for Schwarzschild black
hole, one finds the specific heat is negative. For quantum
isolated horizons, as we have shown here, nothing is
needed to overcome these difficulties. The specific heat
is positive and the system is in thermal equilibrium. This is
the main reason why we believe that this is the correct
statistical description of IH. The limit N ! 1 plays the
role of the thermodynamic limit in our case (in other
words, the semiclassical limit and the thermodynamic limit
are the same).
Often the grand canonical ensembles provide more in-

sights into the problem whose partition function is Z ¼P1
0 zNZð�;NÞ, where Zð�;NÞ is the canonical partition

function and z ¼ expð��Þ. It is not difficult to see that
Z ¼ ½1� zfðTÞ��1, where fðTÞ¼Pð2jþ1Þexpð��EjÞ.
The average energy hEi and the average number of punc-
tures hNi are related in the same way as (19). They also
show that zfðTÞ ¼ 1�Oð1=NÞ, so in the largeN limit and
for T ¼ TU the chemical potential is the same as (16). The
entropy S ¼ �hEi � hNi logzþ logZ is

S ¼ Smicro þOðlogNÞ: (21)

Again, the deviation from the microcanonical entropy is
small in the large N limit. However, it is important to note
that the fluctuations in N, and hence also in E, are Oð1Þ.
This signals to the fact that the system is in a phase
transition region (see, for example, [14]). This phase tran-
sition must have important significance in the quantum
geometry description of IH. This may suggest that the
semiclassical limit of IH is critical (similar to the contin-
uum limit in lattice gauge theories where correlation
lengths diverge). A different theoretical possibility is that
this is relevant for situations when the IH is placed in the
environment of other IHs with which it can exchange
topological defects. Such environments arise during black
hole mergers or quantum mechanical pair productions. The
behavior of IH may differ from the microcanonical or
canonical descriptions in such situations (such as, there is
an additional log correction in the entropy). We keep this
important issue of phase transition for future study.
Since the gas of punctures is in equilibrium at a high

temperature (of the order of Planck mass), statistically the
punctures may very well be bosonic or anionic (the depar-
ture from Boltzmann statistics should be small). This may
have important implications at other temperatures, espe-
cially when the semiclassical approximation breaks down
and we have to deal with the quantum mechanics of
punctures directly. We wish to analyze this aspect of the
gas also in the future.
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The quantum corrections found here are different from
the log corrections that arise in all counting (the latter
corrections arise from counting the subdominant configu-
rations and are also present in our model). A somewhat
similar log correction arises in the case of the grand
canonical ensemble, and in that case the two corrections
compete with each other. Investigations of this aspect are
again kept for a future study.

We are grateful for exchanges with and remarks from F.
Barbero, Ayan Chatterjee, C. Rovelli, and E. Wilson-
Ewing.
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