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We study the coupling of massive scalar fields to matter in orbit around rotating black holes. It is

generally expected that orbiting bodies will lose energy in gravitational waves, slowly inspiraling into the

black hole. Instead, we show that the coupling of the field to matter leads to a surprising effect: because of

superradiance, matter can hover into ‘‘floating orbits’’ for which the net gravitational energy loss at infinity

is entirely provided by the black hole’s rotational energy. Orbiting bodies remain floating until they extract

sufficient angular momentum from the black hole, or until perturbations or nonlinear effects disrupt the

orbit. For slowly rotating and nonrotating black holes floating orbits are unlikely to exist, but resonances at

orbital frequencies corresponding to quasibound states of the scalar field can speed up the inspiral, so that

the orbiting body sinks. These effects could be a smoking gun of deviations from general relativity.
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I. Introduction.—Massive scalars are ubiquitous in phys-
ics. For example, light scalars spanning several orders of
magnitude in mass are predicted in string-theory scenarios
[1–3]. Massive scalars are observationally viable in scalar-
tensor generalizations of Einstein’s general relativity [4]
and can be regarded as an effective propagating degree of
freedom in fðRÞ theories [5,6]. In this Letter we consider
generic massive scalar fields coupled to matter in orbit
around a rotating black hole (BH).

Awell-known phenomenon in BH physics is the Penrose
process (for particles) and the associated superradiant am-
plification (for waves) [7,8]. Consider a Kerr BH of mass

M, angular momentum J ¼ aM, and horizon radius rþ ¼
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
, so that the angular velocity of the horizon

�H ¼ a=2Mrþ (here and below we set G ¼ c ¼ 1). A
wave with frequency!<m�H incident on the BH (where
m is the azimuthal quantum number) is amplified in a
scattering process, the excess energy coming from the
BH’s rotational energy. Superradiance is responsible for
many interesting effects [9–16]. Here we explore the in-
teresting possibility that an object in orbit around a rotating
BH may excite superradiant modes to appreciable ampli-
tudes. As the object orbits around the BH it loses energy in
gravitational waves, slowly spiraling in, as shown experi-
mentally by the Hulse-Taylor binary pulsar. This follows
from energy balance: if the orbital energy of the particle is
Ep, and the total (gravitational plus scalar) energy flux is
_ET ¼ _Eg þ _Es, then

_Ep þ _Eg þ _Es ¼ 0: (1)

Usually _Eg þ _Es > 0, and therefore the orbit shrinks with
time. However, it is possible that, due to superradiance,
_Eg þ _Es ¼ 0. In this case _Ep ¼ 0, and the particle can

hover in a ‘‘floating orbit’’ [9,10]. Here we show that
floating orbits, for which the net gravitational energy loss
at infinity is entirely provided by the BH’s rotational
energy, can exist for a wide range of scalar-field masses.
Orbiting bodies will float until they extract sufficient an-
gular momentum from the BH or until disruptive (perhaps
nonlinear) effects stop the process. When the BH rotates
slowly the condition for superradiance at these resonances
is not met, but we show that resonances at small orbital
frequencies (corresponding to large positive scalar fluxes
going into the horizon) still exist, and that they cause the
object to inspiral faster.
IIA. Setup.—The process we consider is quite general. It

occurs in all theories of gravity with Kerr BHs as back-
ground solutions and a scalar field of mass @�s coupled to

FIG. 1 (color online). Pictorial description of floating orbits.
An orbiting body excites superradiant scalar modes close to the
BH horizon. Since the scalar field is massive, the flux at infinity
consists solely of gravitational radiation.
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matter (see, e.g., [17,18]). At first order in perturbation
theory, the field equations for the scalar field reduce to

½h��2
s�’ ¼ �T : (2)

Our main results will be to a large extent independent of
the source term on the right-hand side, but for concreteness
we focus on source terms of the form

T ¼
Z d ��ffiffiffiffiffiffiffiffiffiffiffiffi

� �gð0Þ
q mp�

ð4Þðx� Xð ��ÞÞ; (3)

corresponding to the trace of the stress-energy tensor of a

point particle with mass mp, where �gð0Þ is the background
(Kerr) metric. In scalar-tensor theories, for example, � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�=ð2þ!BDÞ

p ðs� 1=2Þ, where !BD is the Brans-Dicke
(BD) parameter (measurements of the Shapiro time
delay require!BD > 40 000 for�s ¼ 0 [19], but couplings
of order !BD �Oð1Þ are observationally allowed when
�s * 10�17 eV, and no bounds on !BD exist when �s *
10�16 eV [20]. Considering a supermassive BH of mass
M� 105M� and a typical sensitivity s� 0:2, these bounds
translate into � & 8� 10�3 when �s ¼ 0, � & 0:9 when
�sM > 10�2, and no bounds on � when �sM > 0:1.) and
s is an object-dependent ‘‘sensitivity factor’’ [4,21].

Weak-field gravitational radiation circularizes the orbit
(see below for a proof in the present context), so we
consider equatorial circular orbits around a Kerr BH, but
most results apply to more general orbits. Using the ‘‘adia-
batic approximation’’ we assume that the radiation reaction
time scale is much longer than the orbital time scale,
and compute the total energy flux _ET for geodesic orbits.
For prograde orbits, energy, angular momentum, and fre-
quency of a particle at r ¼ r0 read

Ep ¼ a
ffiffiffiffiffi
M

p þ ffiffiffiffiffi
r0

p ðr0 � 2MÞ
r3=40

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a

ffiffiffiffiffi
M

p þ ffiffiffiffiffi
r0

p ðr0 � 3MÞ
q mp; (4)

Lp ¼
ffiffiffiffiffi
M

p ðr20 � 2a
ffiffiffiffiffiffiffiffiffi
Mr0

p þ a2Þ
r3=40

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a

ffiffiffiffiffi
M

p þ ffiffiffiffiffi
r0

p ðr0 � 3MÞ
q mp; (5)

�p ¼
ffiffiffiffiffi
M

p

a
ffiffiffiffiffi
M

p þ r3=20

: (6)

The four-velocity of the particle on a timelike geodesic
reads r20mpU

�¼ ððr20þa2ÞQ=�þaðLp�aEpÞ;0;0;Lp�
aEpþaQ=�Þ, where �¼ r2�2Mrþa2, Q¼ðr20þa2Þ�
Ep�aLp.

IIB. Wave emission.—Because of the coupling to matter,
the orbiting object emits both gravitational and scalar
radiation. Gravitational radiation can be computed using
Teukolsky’s formalism [22]. The relevant equations and
their solution are presented by Detweiler [23]. Here we
focus on scalar wave emission. Defining

’ðt; r;�pÞ ¼
X
l;m

Z
d!eim��i!t Xlmð!; rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p Slmð�Þ; (7)

we get the nonhomogeneous equation for the scalar field

�
d2

dr2�
þ V

�
Xlm!ðrÞ ¼ �

ðr2 þ a2Þ3=2 Tlm!; (8)

where dr=dr� ¼ �=ðr2 þ a2Þ,
Tlm! ¼ � �

Ut S
�
lmð�=2Þ�ðr� r0Þmp�ðm�p �!Þ; (9)

and the effective potential for wave propagation V is given
(e.g.) in [21]. Let us consider two independent solutions
Xrþ
lm! and X1

lm! to the homogeneous equation satisfying the

following boundary conditions:

X1;rþ
lm! � eik1;Hr� as r ! 1; rþ;

where kH ¼ !�m�H and k1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 ��2

s

p
. Let W be

their Wronskian. The fluxes of scalar energy at the horizon
and at infinity are

_E s
rþ;1 ¼ m�pkH;1jZrþ;1

lm! j2; (10)

Zrþ;1
lm! � ��

X1;rþ
lm! ðr0Þ
WUt

S�lmð�=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ a2

q mp=M: (11)

IIC. Analytic solution at low frequencies.—The scalar
flux at infinity can be computed in the low-frequency
regime [24]. For r0=M � 1 and l ¼ m ¼ 1,

_Es1 ¼ �2M2

12�

ð1��2
sr

3
0=MÞ3=2

r40
m2

p�ð�p ��sÞ; (12)

where �ðxÞ is the Heaviside function. For generic modes,
at large distances and for ! ¼ m�p > �s, scalar radia-

tion dominates over gravitational radiation: compare
Eq. (12) with the standard quadrupole formula _Eg

1 ¼
32=5ðr0=MÞ�5m2

p=M
2. This result is oblivious to the pres-

ence of the rotating BH. In fact, for !>�s, the fluxes at
the horizon are negligible. However, for frequencies close
to �s, a resonance occurs at [25]:

!2
res ¼ �2

s ��2
s

�
�sM

lþ 1þ n

�
2
; n ¼ 0; 1; . . . : (13)

From Eq. (10) we see that _Es
rþ < 0 in the superradiant

regime (kH < 0). Close to resonance we get (cf. also [25])

X1
lm! � rlþ1e��2

sMr=ðlþ1þnÞ: (14)

We have verified this result numerically, finding very good
agreement with the analytical prediction. For the funda-
mental mode n ¼ 0, at resonance, we find

W � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ a2

q
ðrþ � r�ÞlþiP �½lþ 1��½lþ 1� 2iP�

�½2lþ 1��½1� 2iP� ;
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where P ¼ �2MrþkH=ðrþ � r�Þ. Finally, we can esti-
mate the peak flux close to the resonant frequencies. At
large distances and for l ¼ m ¼ 1, n ¼ 0 we find

_Es;peak
rþ ��

3�2
ffiffiffiffi
r0
M

q
m2

pM

16�rþðM2 � a2Þ½ a
2rþ

� ðMr0Þ3=2�F
; (15)

withF ¼ 1þ 4P2. Quite surprisingly the scalar flux at the
horizon grows in magnitude with r0 and it is negative, due
to superradiance, at sufficiently large distances (for generic

l, the peak flux would scale as _E
s;peak
rþ / r2l�3=2

0 ). For very

small a the peak flux at resonance is instead positive, and it
can also be very large: for the Schwarzschild geometry,

32�M4 _E
s;peak
rþ � 3�2r20m

2
p.

III. Floating orbits.—From the previous discussion it
follows that, for any �sM 	 1, there exists a frequency
!res & �s for which the total flux _Es1 þ _Es

rþ þ _Eg
1 þ

_Eg
rþ ¼ 0, because the negative scalar flux at the horizon

is (in modulus) large enough to compensate for the other
positive contributions. This expectation is confirmed by a
full numerical integration of Teukolsky’s equation: see
Fig. 2 and Table I. The width of the peak is proportional
to the imaginary part of the resonant mode !I / �4lþ5

s

[25]. For l ¼ 1, more explicitly,

!I ¼ �s

ð�sMÞ8
24

ða=M� 2�srþÞ: (16)

As �s ! 0 the imaginary part becomes tiny, and an accu-
rate fine tuning is needed to numerically resolve the reso-
nance. For example, to resolve the peak at r0 � 100M,
corresponding to �sM ¼ 10�3, we tuned the location of
r0 to 25 decimal places. Computing the imaginary part of
the unstable modes when �s ! 0 is also challenging,
but we were able to obtain stable results for the resonance
location and for the height of the peak. A fit to
numerical results for 10M & r0 & 100M (cf. Table I)

yields _E
s;peak
rþ � r0:510 , to be compared with _E

s;peak
rþ � r1=20

in Eq. (15). Close to floating orbits

dEp

dt
��ðEp � EfÞ d

_ET

dEp

��������Ep¼Ef

; (17)

where Ef is the energy of the particle at the floating orbit,

and we used the balance condition (1). During inspiral,
right before reaching the floating orbit, the time needed for
the particle to increase its binding energy from jEfj � � to

jEfj diverges logarithmically. Therefore, floating orbits are

expected to last much longer than a typical inspiral time
scale, with a potentially striking observational signature in
the gravitational-wave spectrum.
In the adiabatic approximation, the mass and angular

momentum of the background spacetime are constant.
However, the negative energy flux at the horizon reduces
the BHmass and angular momentum (�M < 0, �J < 0). In
order to estimate how long a particle can stay in a floating
orbit we must go beyond the adiabatic approximation.
Under ideal conditions, floating would stop only when
the peak of the scalar flux at the horizon is too small to
compensate for the gravitational flux, j _Egj> j _Es

peakj. From
the balance condition (1) we find that �Ep ¼ 0, which,

using Eq. (4), can be written as

�r0 ¼ �Mr0½a2 þ 3ð2M� r0Þr0 þ 2a
ffiffiffiffiffiffiffiffiffiffiffiffi
r0=M

p ðr0 � 3MÞ�
M½3a2 � 8a

ffiffiffiffiffiffiffiffiffi
Mr0

p þ ð6M� r0Þr0�
;

where we used the relation �M ¼ �p�J, valid for circular

orbits. Substituting the equation above into Eq. (15) and
approximating �M=�t� _Es

rþ ¼� _Eg
1¼�32=5ðr0=MÞ�5�

m2
p=M

2 at resonance, we obtain, for l ¼ m ¼ 1 and in the

limits �s ! 0 and a � 1=�s,

� _Es;peak
rþ
�t

¼ � 12�2

5�

M

a2

�
mp

M

�
4
�
M

r0

�
3
;

which is negative: BH mass loss decreases the height of the
peak on a time scale

TABLE I. Orbital radius at resonance and peak scalar flux for
n ¼ 0, l ¼ m ¼ 1, a ¼ 0:99M and several values of �sM 	 1.
For comparison, a typical extreme-mass ratio inspiral becomes
detectable by space-based interferometers at radii r0=M�
50½ð106M�=MÞðfcut=10�4 HzÞ��2=3, where fcut is the lower cut-
off for the sensitivity threshold of the interferometer. A floating
orbit occurs for �> �crit. Notice that �crit is well below current
observational bounds [20] for any �s.

�sM r0=M (resonance) ð�mp=MÞ�2 _E
s;peak
rþ �crit

10�1 4.334 002 888 735 63 �0:1828 1:1� 10�1

10�2 21.402 098 708 051 0 �0:4881 1:6� 10�3

10�3 99.933 997 441 300 5 �1:1588 2:3� 10�5
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FIG. 2 (color online). Dominant fluxes of scalar and gravita-
tional energy (l ¼ m ¼ 1 and l ¼ m ¼ 2, respectively) for
�sM ¼ 10�2, � ¼ 10�2, and a ¼ 0:99M. The inset is a zoom
around resonance.
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_E
s;peak
rþ

� _E
s;peak
rþ =�t

� 5a

32

�
M

mp

�
2
�
r0
M

�
7=2

;

which does not depend on the coupling constant �.
The delayed inspiral may have observational consequen-

ces. In particular, notice that in the absence of scalar fields
the evolution of orbital frequency scales as

_�GR=�
2
p � 96=5ðmp=MÞðM�pÞ5=3: (18)

Close to a floating orbit we find instead that

_�floating=�
2
p � 32ðmp=MÞ2ðM�pÞ7=3: (19)

IIIB. Perturbations of floating orbits.—It might be an-
ticipated that floating orbits could be very sensitive to small
perturbations, because the resonance has a small width
proportional to !I, which is given by Eq. (16). One im-
portant class of perturbations consists of adding a small
eccentricity " to the motion. As pointed out in [26], eccen-
tricity will produce frequency sidebands. Because these
sidebands are typically far away from resonance, scalar
emission in these channels can be neglected, and we find
that " tends to decrease close to floating orbits:

_"

"
¼ � 352mp

15M2

�
M

r0

�
4
�
1� 991

308

M

r0
þOðr�2

0 Þ
�
; (20)

i.e., circular floating orbits stay circular. The argument
breaks down at small separations, where a better under-
standing of eccentricity evolution would be desirable.

Perhaps the most dangerous perturbation would come
from small ‘‘kicks’’ taking the object from a trajectory with
frequency �p to �p þ ��p. If ��p � !I (this is a

conservative estimate, as floating itself extends over a
larger portion of the frequency window) this might stop
floating and superradiant energy extraction. When trans-
lated into perturbations of the position of the orbiting body,
which we take to be of size Rp, floating would stop for

�r0=Rp � 10�5 M
106Rp

ð r0
10MÞ�11. For typical extreme-mass

ratio inspirals of interest for space-based detectors
M=Rp � 106 and r0 � 10M, so �r0=Rp � 10�5.

This rough estimate suggests that when r0=M � 1,
floating is easily stopped by small external perturbations.
At large distance, even thermal fluctuations of the orbiting
body may disrupt a floating orbit. Note, however, that this
estimate is overly pessimistic, as it considers only the
fundamental mode. For the first few overtone numbers n
the scalar flux at peak is roughly independent of n. If this
behavior holds at large n, then the effective allowed win-
dow ��p would be larger by powers of 1=�2

s . Further

investigation of this issue is necessary to understand the
relevance of floating orbits.

The small orbiting body was assumed throughout to be
pointlike. In reality there will be tidal interactions with the
field of the massive BH, which will alter the gravitational
waveform. For extreme mass ratios such as the one we

consider, this effect is negligible [27]. Also, tidal effects do
not in any way affect the existence of floating orbits, but
they may have an impact in the disruption of floating. It is
also conceivable that, on such large time scales, nonlinear
mode coupling could channel energy to higher-order
modes, slowly washing out the peak in the scalar flux.
An analysis of tidal effects and of the nonlinear regime is
beyond the scope of this Letter.
IV. Sinking orbits.—For small rotation, long-lived modes

of frequency ! ’ �s can be excited outside the innermost
stable circular orbit (ISCO) if �H < !<�ISCO. This can
happen for 0 
 a & 0:36M, and the corresponding reso-
nances are now stable [cf. the sign change in Eqs. (15) and
(16) for �s >�H]. For these resonances, the scalar flux at
the horizon is large and positive. For r0 � M (or when
�sM 	 1) the scalar flux dominates over the gravitational

flux. From Eq. (15), using �Ep=�t ¼ � _ET �� _E
s;peak
rþ and

neglecting mass and angular momentum loss, we get (for
l ¼ m ¼ 1, n ¼ 0)

_�sinking

�2
p

¼ 9�2mp=M

8�ð1� a2=M2Þð2rþ�p � a=MÞF ðM�pÞ�2:

These resonances are not superradiant in origin. In fact,
they are present even for nonrotating BHs. For very small

a, _�sinking=�
2
p � 18�2mpðM�pÞ�3=ð256MÞ close to reso-

nance: compare the inspiral rate in general relativity with-
out scalar fields, Eq. (18). Thus, close to stable resonances
the orbiting body inspirals much faster, and the orbit sinks.
Although this effect seems huge at small frequencies, its
time scale is extremely small, since the resonance width
�!I [cf. Eq. (16)]. Indeed, we get

�s � j !I

_�p

j ¼ �

27

ðM2 � a2ÞF
mp

�
2rþ�s � a

M

�
2 ðM�sÞ9

�2
:

Note that �s ¼ 0 for a normal mode, at �p ��s ¼ �H.

V. Conclusions.—We described an extreme form of en-
ergy extraction from a Kerr BH when a massive scalar field
is coupled to a point particle in circular orbit around the
BH. This is the first example of a phenomenon produced by
a resonance between orbital frequencies and proper oscil-
lation frequencies of the BH. Our results apply in principle
to stationary background geometries different from the
Kerr solution. The existence of an ergoregion is mandatory.
There are few experimental bounds on �s. Because of
superradiance, Kerr BHs are unstable under massive scalar
perturbations, so (in principle) the observation of fast-
spinning astrophysical BHs can exclude the existence of
very light scalars (axions) [2]. The strongest instability was
found to occur when�s ¼ 5:63� 10�11ðM=M�Þ�1 eV on
a time scale � ¼ 32:8ðM=M�Þs [13]. Our results apply to
generic theories of gravity, a particular instance being
BD theory. Floating may occur and be observed at radii
r0 < 50M (cf. caption of Table I). From Eq. (15), imposing
_Es;peak > _Eg at r0 ¼ 50M, we find the smallest value of �
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which allows for observable effects. This translates into
!BD & 108 (2� 108) for a=M ¼ 0:99 (a=M ¼ 0:5). Thus,
floating orbits could in principle provide much more strin-
gent constraints on BD theory than those coming from
Solar System observations.

Current searches for gravitational waves from coales-
cing compact binaries use post-Newtonian waveform tem-
plates, and are strongly biased towards general relativity. If
light scalar degrees of freedom couple to matter, binaries
may merge in a much more interesting way, and current
searches based on matched-filtering techniques may under-
perform. In particular, gravitational waveforms would
carry a clear signature of floating orbits: compare
Eq. (19) with the standard general relativistic prediction
of Eq. (18). Future space-based and advanced Earth-based
detectors may have the potential to reveal the existence of
floating orbits and of other surprising ‘‘anomalies’’ in the
orbital evolution of compact binaries.
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