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In linear disordered systems Anderson localization makes any wave packet stay localized for all times.

Its fate in nonlinear disordered systems (localization versus propagation) is under intense theoretical

debate and experimental study. We resolve this dispute showing that, unlike in the common hypotheses,

the answer is probabilistic rather than exclusive. At any small but finite nonlinearity (energy) value there is

a finite probability for Anderson localization to break up and propagating nonlinear waves to take over. It

increases with nonlinearity (energy) and reaches unity at a certain threshold, determined by the initial

wave packet size. Moreover, the spreading probability stays finite also in the limit of infinite packet size at

fixed total energy. These results generalize to higher dimensions as well.
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Anderson localization (AL) is a fundamental physical
wave phenomenon with exponential localization of eigen-
states in linear wave equations due to disorder [1,2]. It was
originally used to explain metal-insulator transitions [3],
and has been recently related to experimentally observed
localization of weak intensity light [4] and noninteracting
matter waves [5] on disordered lattice systems. Because of
this, the fate of AL in the presence of many-body inter-
actions or corresponding nonlinearity (a problem treated in
nonlinear science previously [6]) has been brought to the
frontier of theoretical and experimental physics [7,8].

The pioneering experiments demonstrate the principal
possibility to study the interaction (nonlinearity) induced
delocalization, also challenging the severe length and time
scale limitations which restrict a more subtle quantitative
analysis, e.g., the wave packet subdiffusion exponents
[4,9]. Theoretical studies therefore remain central here.
Two faces of Anderson localization are usually probed:
the absence of the wave packet spreading [10–19] (the
focus of this Letter) and vanishing conductivity [20,21].
Wave packets, for not too weak nonlinearities, have been
found to spread subdiffusively, disobeying AL at least over
many time scales [10–12], and remarkable progress in
studying the regimes and characteristics of wave packet
spreading has been achieved [15–19].

Still, the original questions are open. It remains debated
whether the observed spreading will continue infinitely or
slow down and even stop to restore AL once the wave
packet densities become substantially small, as conjec-
tured in Refs. [13,14,22]. It is unknown whether there
exists a lower bound on the nonlinearity strength, beyond
which wave packets do obey AL, and therefore do not
spread at all; or are some time scales diverging in this
limit? Unavoidable finite size, time, energy, and precision
limitations will make the most advanced numerical results
not entirely convincing. To achieve a breakthrough, a novel
approach is needed.

The probabilistic description of AL in terms of the
measure of localized regular trajectories in phase space
(periodic orbits and tori) appears to be a promising solution
for nonlinear disordered systems. Indeed, the mere as-
sumption that a wave packet is launched on a chaotic
trajectory leads to the conclusion that chaos remains for-
ever: Arnol’d conjecture, unproved but widely accepted,
states the uniqueness of the chaotic region in phase space
[23]. If initial conditions belong to a chaotic trajectory,
then it will be unbounded in phase space, and, character-
ized by mixing, by visiting all parts of the chaotic domain
[24]. This corresponds to unlimited spreading of a wave
packet. The spreading is absent only if the initial condi-
tions belong to a periodic orbit or torus, and this regular
trajectory is bounded in the phase space.
The progress has been quite limited up to now due to

the difficulty of the task. Persistence of tori has been
proved for a special class of infinite systems [25] and
for finite tori dimensionality [26] only. The nonzero proba-
bility of existence of infinite-dimensional tori in the
generic case (for small enough energies) has been
conjectured by empirical and numerical arguments in
Ref. [22]. Quantitative estimates for AL probabilities are
lacking; qualitative conclusions advocate survival of
localization.
In this Letter we show the probabilistic nature of AL in

nonlinear disordered systems, disproving the common rival
conjectures of exclusive localization or propagation. At
any small but finite nonlinearity (energy) value there is a
finite probability for AL to break up and for nonlinear
waves to propagate. It increases with nonlinearity (energy)
and reaches unity at a certain threshold, determined by the
initial wave packet size. Moreover, the spreading proba-
bility stays finite also in the limit of infinite packet size at
fixed total energy. This finite value is between zero and one
for quartic anharmonicity (as realized for two-body inter-
actions and in optical Kerr media), strictly one for the
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lower degree of anharmonicity, and has zero as the lower
bound for the higher.

We first address the paradigmatic Fröhlich-Spencer-
Wayne (FSW) type d-dimensional classical lattice [25],
for which the linear eigenmodes of a disordered system are
compact single-site excitations with random frequencies,
and where infinite-dimensional Kolmogorov-Arnold-
Moser tori [25] exist. This model can be considered as
the strong disorder limit of generic classical Klein-Gordon
(KG) and semiclassical discrete nonlinear Schrödinger
arrays, extremely successful in reproducing and explaining
experimental results [4,9], where the strong disorder re-
gime is commonly realized. The FSW Hamiltonian reads

H ¼ X

n

�
p2
n

2
þ "nx

2
n

2
þ X

m2DðnÞ

ðxm � xnÞ�
2�

�
; (1)

where xn is the displacement of the n ¼ ðn1; . . . ; ndÞth
particle from its original position, pn its momentum,
DðnÞ is the set of its nearest neighbors, and the random
uncorrelated "n 2 ½1=2; 3=2� are uniformly distributed.
Unless explicitly specified, a chain d ¼ 1 with quartic
anharmonicity � ¼ 4 is considered. Without the loss of
generality we assume "0 ¼ 1.

As argued above, AL can be observed under two simul-
taneous conditions: existence of a localized regular trajec-
tory and the initial conditions belonging to it. Our general
strategy is to study the probability for such trajectory to
exist at a given energy, with realizations of disorder varied.
We consider the wave packets of different initial width L
and derive the probability of L-site localized periodic and
quasiperiodic solutions of (1).

We start with periodic orbits, which are single-site
localized solutions, and derive conditions of their destruc-
tion (when regular trajectories delocalize the correspond-
ing wave packets are assumed to spread). Let us construct
an exact time-periodic orbit of (1) localized at n ¼ 0.

We apply perturbation theory xnðtÞ ¼ P1
k¼0 x

ðkÞ
n ðtÞ in the

small-amplitude limit, taking xð0Þn ðtÞ ¼ An�0;n cost as the

zero-order approximation (note that "0 ¼ 1). In first order
we find

x�1ðtÞ ¼ A�1 cost; A�1 ¼ 3A3
0

4ð"�1 � "0Þ : (2)

In higher orders it follows

x�nðtÞ ¼ A�n cost; A�n ¼
3A3

�ðn�1Þ
4ð"�n � "0Þ : (3)

For the perturbative solution (3) to converge, the ampli-
tudes must decay:

��������
A�n

A�ðn�1Þ

��������¼ 3A2
�ðn�1Þ

4j"�n � "0j<
1

�
; � > 1: (4)

The probability for this condition to hold at site �n is
determined by its random on-site potential "�n and the
oscillation amplitude of its neighbor:

P ð�nÞ ¼ 1� 3
2�A

2
�ðn�1Þ � 1� 3

2�
3�2nA2

0: (5)

The probability to obtain a localized time-periodic solution

in the infinite chain P ¼ Q1
n¼1½P ðnÞ�2 is bounded from

above by the probability to have decreasing amplitudes at
least in the first neighbors

P � P ð1ÞP ð�1Þ ¼ ð1� 3�EÞ2 � Pþ; (6)

and from below by the probability to get at least an
exponentially decaying profile in the infinite system

P �Y1
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�
2 �P�; (7)

assuming 3�E � 1, where E ¼ A2
0=2 is the energy of the

central site.
It follows from (6) that it is not possible to construct

a single-site localized (jAn=A0j � 1, 8n � 0) time-
periodic orbit for E> 1=3. For smaller energies, the lower
bound of spreading probability always remains nonzero
and scales linearly with the total wave packet energy E,
backing the arguments in [22].
Next we consider L-site localized solutions to (1)

loosely corresponding to tori. Their existence probability
is maximized for sparse packets, when the most excited
sites are separated by intervals of weakly excited ones (due
to reduced perturbative corrections or, equivalently, reso-
nance probabilities, see also [22]). We assume such a
sparse excitation with L sites with the energy E=L per
site, separated by at least two nonexcited sites, as a zero-
order approximation for the perturbation theory. In the first
order the problem is reduced to L independent single-site
problems and, with (6), the upper bound for the localiza-
tion probability reads

P L ¼
�
1� 3�E

L

�
2L
: (8)

Note that one can proceed to arbitrary high orders assum-
ing sparser zero-order approximations, ultimately obtain-
ing the lower bound analogue to (8) by exponentiating (7).
P L is a monotonically increasing function of L with the
limiting localization probability for the infinite-size packet

P 1 ¼ e�6�E: (9)

Equations (8) and (9) are the central results of this work.
Note that a wave packet of size L has 2L phase space
variables to be defined. The probability of obtaining regu-
lar AL states (or not) is defined through the ratio of the
volume vl of all points in this 2L-dimensional phase space,
which yield AL localization, to the full available volume
vl þ vs where vs is the volume of all points which yield
spreading: P L ¼ vl=ðvl þ vsÞ. We can now conclude that
for a wave packet of size L no regular AL states are
expected if the energy density h � E=L > 1=3. But even
for h < 1=3 there is always a finite probability to observe
spreading trajectories.
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It is most interesting that, given a fixed total energy E,
the probability for AL is approaching a finite value below
one in the limit of infinite packet size L (9). Therefore,
even in this limit (of zero energy density and infinite packet
size) there always remains a nonzero probability to spread,
i.e., vs=ðvl þ vsÞ � 0 in this limit.

Remarkably, the derivative @P L=@L� L�2 is also van-
ishing as a power law, and not as an exponential for large L.
Therefore, at variance to the case of AL, there is no new
length scale emerging. In particular, already the first mo-
ment hLi obtained with such a probability distribution
function diverges.

It is instructive to generalize our results to the case of
arbitrary degree of nonlinearity � and lattice dimension-
ality d. We consider localized solutions of equally excited
sites that occupy volume V of characteristic size L. As
before, sparse solutions maximize their existence proba-
bility P V . As the volume scales as V / Ld, we straightfor-
wardly arrive at the probability to find an AL wave packet:

P V ¼
�
1� ��E

�=2�1

V�=2�1

�
2Vd

: (10)

We find that for any � no regular AL wave packets
are expected if the energy density h exceeds a
�-dependent threshold. For smaller h there is always a
finite probability to launch a spreading wave packet. It is
most interesting that the fraction of localized AL wave
packets vl=ðvl þ vsÞ tends to zero in the limit V ! 1 at
fixed E for � < 4, and tends to unity for � > 4 (note that
this is only the upper bound for the AL probability), as
shown schematically in Fig. 1.

To probe our analytical results we simulate the evolution
of single-site initial excitations with energy E in (1) and
(11) for d ¼ 1, � ¼ 4. We use a symplectic SABA-type
numerical integration scheme [15,19] up to final times
tend ¼ 109. To characterize the wave packet we calcu-
late its second moment m2 ¼

P
nðn� �nÞ2En=E, with

�n ¼ P
nnEn=E, which measures the squared distance be-

tween both packet tails, and the participation number

P ¼ E2=
P

nE
2
n, which tells the number of most strongly

excited lattice sites.
We first choose an energy E ¼ 1 which according to our

above results should yield spreading wave packets with
probability one. Indeed in Fig. 2 we plot the growth of m2

for two disorder realizations, which survives a fit m2 /
t1=3...1=2 in accord with theoretical predictions [17,18]. For
small energy E ¼ 0:05 we expect to observe both spread-
ing and nonspreading wave packets. In the inset in Fig. 2
we show two typical cases—in one case the second mo-
ment does grow, in the second case it does not, therefore
indicating AL.
To mount statistics we perform simulations of single-site

excitations at a given energy E for Nr ¼ 1000 different
disorder realizations. We measure the participation number
PðtÞ at three large time values t ¼ 108; 5	 108; 109, sort
them by value, and plot in Fig. 3 versus the sorting index i.
For very small energy E ¼ 0:002 all three curves for
different times overlap and have small values of P, indicat-
ing AL. For larger energies, e.g., E ¼ 0:05, we find that the
curves overlap up to some largest index imðEÞ and differ for
larger indices.
To quantify the results we introduce the following

numerical criterion for a single-site (or a single-mode)
localized trajectory: the one with participation number
PðtÞ< 1þ �, choosing a small enough � ¼ 0:2. As
P 
 1þ 2ðE�1 þ E1Þ=E0 for strongly localized trajecto-
ries, (5) yields a theoretical estimate for the nonspreading

fraction: P 
 1� 6
ffiffiffiffiffiffiffiffiffi
2=�

p
E. The numerically obtained de-

pendence of the nonspreading fraction on the energy shows
a linear decay and agrees well with this analytical estimate
(Fig. 3, inset).

FIG. 1. Schematic dependence of the probability P V for wave
packets to stay localized (dark area) together with the comple-
mentary light area of spreading wave packets versus the wave
packet volume V (either initial or attained at some time t) for
three different orders of nonlinearity � < 4, � ¼ 4, and � > 4.
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FIG. 2. Second moment (see text for definition) of a spreading
single-site excitation for two different disorder realizations ver-
sus time, d ¼ 1, � ¼ 4, E ¼ 1. Dashed and dash-dotted lines
with the slopes 1=3 and 1=2, respectively, guide the eye.
Inset: Second moment of a spreading and a nonspreading
single-site excitation for two different disorder realizations ver-
sus time, d ¼ 1, � ¼ 4, E ¼ 0:05.
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A similar approach can be developed in the KG chain
described by the Hamiltonian

H ¼X

n

�
p2
n

2
þ "nx

2
n

2
þ ux4n

4
þ X

m2DðnÞ

ðxm � xnÞ2
4W

�
: (11)

This is a generic model with a finite localization length of
Anderson modes [12,15,16,18,19]. We performed a similar
numerical analysis at u ¼ 1 as for the FSW model with
launching a single eigenmode of the corresponding linear
eigenvalue problem of u ¼ 0. The parameter W ¼ 6. The
final outcome is plotted in the inset in Fig. 3. It shows again
a linear decay of the AL probability P L with energy,
similar to the FSW model.

In summary, we developed the theory of AL in nonlinear
disordered systems in the zero-temperature limit. In con-
trast to linear systems, where AL halts wave propagation,
the fate of AL becomes a matter of probability, and non-
linear waves may propagate. With increasing the strength
of nonlinearity (energy) the probability of AL is reduced,
and reaches zero at a certain level of nonlinearity depend-
ing on the initial wave packet size. At fixed total energy,
the fraction of AL wave packets does not reach unity in the
limit of an infinite packet size but stays finite yet less than
one for quartic anharmonicity. For a weaker degree of
nonlinearity the AL fraction in this limit vanishes com-
pletely, while for a stronger nonlinearity degree its upper
bound tends to one. It follows that the previously
conjectured slowing down or halt of wave propagation
[13,14,22] is not realized at least for the quartic and weaker

anharmonicity. An analytic treatment of the generic
KG-type system yields similar results and will be presented
in more detail elsewhere. Our results not only resolve a
fundamental theoretical problem in nonlinear wave phys-
ics but also have multifaceted experimental implications,
as in design, as well as for interpretation.
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[25] J. Fröhlich, T. Spencer, and C. E. Wayne, J. Stat. Phys. 42,
247 (1986).

[26] J. Bourgain and W.M. Wang, J. Eur. Math. Soc. 10, 1
(2008).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

i / N
r

2

4

6

8

10

12

14
P i(t

)

0 0.05 0.1 0.2
E

0

0.2

0.4

0.6

0.8

1

P
L

=
1

bl
FSW

KG

o

g

b

v

FIG. 3 (color online). Sorted participation numbers Pi (see text
for definition) for Nr ¼ 1000 different disorder realizations
1 � i � Nr at t ¼ 108; 5	 108; 109 (bottom to top) for
E ¼ 0:08 (bl), E ¼ 0:05 (v), E ¼ 0:03 (b), E ¼ 0:02 (g),
E ¼ 0:002 (o). Inset: Single-site localized fractions (P L¼1):
numerics by symbols, linear fits for FSW and for KG by solid
lines.
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