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We discuss the unusual critical behavior of a generalized XY model containing both 2�-periodic and

�-periodic couplings between sites, allowing for ordinary vortices and half-vortices. The phase diagram

of this system includes both single-particle condensate and pair-condensate phases. Using a field theoretic

formulation and worm algorithm Monte Carlo simulations, we show that in two dimensions it is possible

for the system to pass directly from the disordered (high temperature) phase to the single particle (quasi)

condensate via an Ising transition, a situation reminiscent of the ‘‘deconfined criticality’’ scenario.
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More than 25 years ago, Korshunov [1] and Lee and
Grinstein [2] discussed the statistical mechanics of certain
generalizations of the familiar XY model. XY models are
the simplest systems capturing the rich physics of vortices,
and these topological defects are well known to govern the
critical behavior in two dimensions [3]. The generalizations
discussed by the above authors give rise to half-vortices,
about which theXY order parameter winds by�, connected
by strings with a finite tension. This in turn leads to a far
richer phase diagram (see Fig. 1), whose essential elements
were verified by numerical simulation [4].

Over time there has been considerable interest in iden-
tifying systems where the physics of half-vortices and
strings plays a role, ranging from nematic liquid crystals
[2,5] to the A phase of 3He [1,6], to spinor Bose conden-
sates [7,8]. Indeed, half-vortices have now been directly
observed in exciton-polariton condensates [9]. In recent
years a large amount of activity has focused on one par-
ticular candidate: a gas of attractive bosons. It can have two
distinct superfluid phases: an atomic superfluid of bosons
and a molecular superfluid of boson pairs, with the latter
supporting half-vortices [10,11]. Such a system is in gen-
eral likely to be unstable to collapse, but a possible reso-
lution of this difficulty is to harness three-body loss to
project out triple occupancy of each site of an optical
lattice [12]. This idea led to a resurgence of interest in
the problem [13–17].

We have looked anew at the phase diagram of this type
of system. Previous studies found that one could either pass
directly from the normal state to the atomic condensate at
low temperatures, or first into a molecular condensate with
no single-particle long-range order, and then to the atomic
condensate in an Ising transition. Remarkably, we find that
in two dimensions there is a region of the finite temperature
phase diagram where the normal-to-atomic superfluid
transition is of the Ising, rather than the Kosterlitz-
Thouless type (see Fig. 1). Such unconventional behavior
is reminiscent of the ‘‘deconfined criticality’’ scenario [18].
The two have a common origin in that the expected pro-
liferation of pointlike defects is suppressed by critical

fluctuations. Our prediction is further supported by
Monte Carlo simulations using the worm algorithm and a
novel method based on conformal field theory to identify
an Ising transition in a system with non-Ising degrees of
freedom. We stress that our result applies to the finite
temperature phase diagram of many of the above men-
tioned systems in 2D (see, e.g., [5,8,10,11]), as well as to
the zero temperature phase diagram of the 1D system in
Ref. [17].
The simplest generalization of the XY model with the

requisite physics has the form

H ¼ �X
hiji

½ð1��Þ cosð�i � �jÞ þ�cosð2�i � 2�jÞ� (1)

where the angular variables �i:0 � �i < 2� are defined
on a square lattice and hiji represents nearest-neighbor
pairs. In quantum mechanical language, the two terms

FIG. 1 (color online). Schematic phase diagram of the model
Eq. (2). Solid lines are continuous transitions of the type in-
dicated; the dashed line is first order. The dotted line indicates
the region where the nature of the transition is unknown. The
renormalization group analysis developed here applies in the
vicinity of the solid dot. Inset: an illustration of a half-vortex pair
and the associated string.
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correspond to the hopping of single bosons and boson
pairs, respectively. � ¼ 0 recovers the usual XY model,
which allows for the existence of pointlike vortices around
which the phase increases by a multiple of 2�. � ¼ 1
corresponds to an XY model with half the periodicity,
and thus half-vortices of � winding, but otherwise identi-
cal properties. For �> 1=5 the intersite energy develops a
metastable minimum at j�i � �jj ¼ �. Pairs of half-

vortices are connected by a ‘‘string’’ where �i � �j jumps

by � and for �< 1 this string has a finite tension (see
Fig. 1).

When this tension is large (small �) half-vortices are
bound together irrespective of their topological charge, so
that only integer vortices may exist freely. Thus here the
model displays the familiar Kosterlitz-Thouless (KT) tran-
sition. When the tension is small (� close to 1), a KT
transition of the half-vortices can occur ( 12KT). After this

transition half-vortices are bound together in pairs, so that
the strings connecting them form closed domain walls,
which disappear at a lower temperature as the tension
overcomes their entropy. This second transition is of the
Ising type.

The resemblance of strings to Ising domain walls that
can terminate on half-vortices suggests that the operator
inserting a half-vortex includes an Ising disorder operator
[19]. In the high-temperature phases (corresponding to the
disordered and pair superfluid phases in Fig. 1) the strings
are not confining, equivalent to long range order for the
disorder operator. The half-vortices then can drive a KT
transition by the familiar mechanism. However, along the
Ising critical line the expectation value of the disorder
operator vanishes. The resulting critical fluctuations of
the strings suppress the proliferation of half-vortices, so
that a direct Ising transition between the disordered and
superfluid phases can occur.

Villain model.—This qualitative picture is borne out by
our analysis of a particular microscopic model. Following
the original references [1,2], we study a variant of the
model Eq. (1) with partition function

Z ¼ Y
c

Z �

��

d�c
2�

Y
habi

ðwVð�abÞ þ e�KwVð�ab � �ÞÞ (2)

where �ab � �a � �b and the Villain potential wV is

wVð�Þ �
X1

p¼�1
e�J=2ð�þ2�pÞ2 / X1

j¼�1
ein�e�J�=2n2 (3)

with J� ¼ J�1. K ! 1 is the usual Villain model, with a
KT transition at JVillain � 0:75 . . . [20,21], while K ¼ 0
corresponds to a � periodic Villain model, allowing free
half-vortices, with a 1

2KT transition at J ¼ 4JVillain � 3.

Finite K gives the strings connecting half-vortices a finite
domain wall energy. When J ! 1 the phase differences
between neighboring sites are restricted to 0 or � and the

usual square lattice Ising model with transition at KIsing ¼
lnð1þ ffiffiffi

2
p Þ � 0:881 . . . is recovered.

We map to a generalized height model using the
second representation of the Villain potential in Eq. (3).
Integrating out the angular variables leaves

Z ¼ X
fnijgr�n¼0

exp

�
� J�

2

X
hiji

n2ij þ
K�
2

X
hiji

ð�1Þnij
�
; (4)

where K� and K satisfy the Kramers-Wannier duality
relation sinhK� sinhK ¼ 1. Here the variables nij live on

the links of the lattice. Because of their vanishing lattice
divergence, they may be thought of as currents describing
the world lines of bosons.
Because r � nij ¼ 0, we may write nij ¼ hi � hj, with

integer-valued heights fhig on the dual lattice. Then

Z ¼ X
fhig

exp

�
� J�

2

X
hiji

ðhi � hjÞ2 þ K�
2

X
hiji

�i�j

�
; (5)

where the variables �i � ð�1Þhi . The discrete Gaussian
model given by the first term of Eq. (5) has a roughening
transition from a smooth phase at small J (high tempera-
ture) to a rough phase at large J, corresponding to a
superfluid state of the bosons. The new term in K� allows
for the existence of a second rough phase where the heights
are predominantly even or odd, with the currents nij even,

corresponding to a pair superfluid.
The Ising and Gaussian parts are disentangled by writing

hi ¼ 2~hi þ ð�i � 1Þ=2 and identifying the �i as the dis-
order variables of an Ising model, dual to the usual spin

variables. We move to continuous ~hi by introducing the

� functions
Q

i

P
p �ð~hi � pÞ ¼ Q

i

P
q e

2�iq~hi . An effec-

tive sine-Gordon description is arrived at in the standard
manner [22] by introducing an effective coupling (vortex
fugacity) zp for each harmonic. After a shift in the inte-

gration variables ~hi ! ~hi � ð�i þ 1Þ=4 and retaining only
the q ¼ �1, �2 terms we arrive at

Z ¼ X
�i¼�1

Z Y
i

d~hi exp

�X
hiji

Sij þ
X
i

Vi

�
;

Sij ¼ �2J�ð~hi � ~hjÞ2 þ K�
2
�i�j;

Vi ¼ z1�i cosð2�~hiÞ þ z2 cosð4�~hiÞ:
The nearest-neighbor interactions Sij are those of de-

coupled discrete Gaussian and Ising models. The two terms
in the potential Vi describe, respectively, the half- and
integer vortices, making precise how the half-vortices
couple the Ising and Gaussian degrees of freedom.
Renormalization group (RG) analysis.—The limits

shown in Fig. 1 provide the skeleton of the phase diagram
for this model, but to understand what happens when the
transitions approach each other requires an analysis of the
coupling between the Gaussian and the Ising degrees of
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freedom. Since we are concerned principally with the
nature of the transition in this region, this is most conven-
iently accomplished in the field theory limit, where we
have a sine-Gordon model and an Ising model coupled by
the perturbation

H1=2�V ¼ z1
Z

dx�ðxÞ cos½2�~hðxÞ�: (6)

In the high-temperature (low K) phase of the Ising model,
the disorder operator �ðrÞ acquires an expectation value.
Here H1=2�V becomes equivalent to the cosine potential of

the sine-Gordon model. When z1 ¼ z2 ¼ 0, the operator

cosð2�n~hÞ has dimension �n2=ð4J�Þ, and so is relevant for
J < 8=ð�n2Þ. Thus in the Ising high-temperature phase, the
half-vortices and vortices drive KT transitions at J ¼ 8=�
and J ¼ 2=�, respectively. (These should be understood as
the renormalized values of J: the transitions occurs at a
larger value of bare J.) This accounts for the fourfold
increase in the jump of the superfluid density at the 1

2 KT

transition relative to the usual one [7,23].
The unusual behavior occurs along the critical line of

the Ising model. Here �ðxÞ no longer has an expectation

value, but only critical fluctuations obeying h�ðxÞ�ðyÞi �
jx� yj�1=4. The scaling dimension of�ðxÞ cos½2�~hðxÞ� is
1
8 þ �

4J�
, which does not become relevant until J ¼ 15

2� , a

smaller value than for proliferation of half-vortices in the
disordered phase. This suggests the scenario depicted in
Fig. 1: the Ising transition persists after it has met the 1

2 KT

transition.
The RG equations give more insight into these transi-

tions. Defining the deviation from Ising criticality to be� ¼
K � Kc, at z2 ¼ 0 we find to second order in � and z1 [24]

dz1
dl

¼
�
15

8
� �

4J�

�
z1 � �z1

2
;

dJ�
dl

¼ �2z21
4

;

d�

dl
¼ �� z21

4
;

(7)

where l ¼ logð�=�0Þ, with � being the coarse-grained
length scale. In Fig. 2 we show two sections of the flow in
the �� z1 plane, for values of J above and below Jc � 15

2� .

When J > Jc, the Ising fixed point at the origin is stable to
the H1=2�V perturbation. Note, however, that this is a dan-

gerously irrelevant perturbation, with z1 growing at nega-
tive � (higher temperature) reflecting the proliferation of
the half-vortices. In contrast, when J < Jc, the Ising fixed
point is unstable. The apparent fixed point at finite z1 is in
fact a separatrix along which J flows to zero: crossing this
separatrix presumably corresponds to a first order
transition.

The RG equations (7) are valid in the vicinity of the Ising
fixed point. In particular, our conclusion regarding the
dangerous irrelevance of H1=2�V applies close to the

critical value Jc ¼ 15
2� where this perturbation becomes

marginal. When J > 8
� we know that H1=2�V is irrelevant

even deep in the disordered phase.
Numerical simulations.—We have tested the above cal-

culations using Monte Carlo simulations of the model
Eq. (2) based on the worm algorithm [25], in the formula-
tion given in Ref. [26]. Both single and double worms are
needed to accurately simulate the paired phase. The worm
algorithm directly simulates the partition sum in term of
currents, Eq. (4). The phase diagram resulting from our
simulations is illustrated in Fig. 3, clearly showing the
persistence of the Ising transition after the Ising line meets
the 1

2 KT line.

A particular advantage of the worm algorithm is that it
simultaneously simulates all sectors of the model defined
with periodic boundary conditions (i.e., on a torus). A
sector is specified by a pair of integers W ¼ ðWx;WyÞ
giving the winding of the current loops around each circle
of the torus; in terms of heights, hðxþL;yÞ¼hðx;yÞþWy

and hðx; yþ LÞ ¼ hðx; yÞ þWx. To locate the KTand
1
2 KT
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FIG. 2 (color online). (Left) RG flow in the �� z1 plane for
J ¼ 31

4� . Here the � cosð2�~hÞ perturbation is irrelevant, even

though h�i cosð2�~hÞ is relevant. Note that the Ising fixed point at
� ¼ 0, z1 ¼ 0 is stable. (Right) RG flow for J ¼ 29

4� . The Ising

fixed point is now unstable.

0.2

0.4

0.6

0.8

1

1.2

1.4

2 2.2 2.4 2.6 2.8 3 3.2 3.4

K

J

FIG. 3. Phase diagram near the meeting of the Ising (e) and
1
2KT (	) transitions determined by numerical simulation. The

transitions are determined as described in the text with the Ising
line stopping at the last point where we are confident of the
nature of the transition. The dotted line is a sketch of the
(presumably) first order line connecting to the usual KT tran-
sition (see Fig. 1).
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phase boundaries, we follow the method of Ref. [27] and
exploit the fact [28] that the superfluid density (helicity
modulus) is � ¼ T

2 hW2i (we restore temperature, which

provides the energy scale).
To locate the Ising transition, we utilize the partition

functions in the various sectors. The nonuniversal bulk
contribution to the free energy is independent of sector,
and so the ratio of partition functions in different sectors
should be a universal property of the critical point. Thus

� � ZWxodd;Wyeven þZWxeven;Wyodd

2ZWxeven;Wyeven

(8)

becomes independent of system size, and so the curves for
different sizes plotted in Fig. 4 cross at the transition. We
extract the correlation length critical exponent by assuming
the form �ðL; J; KÞ ¼ fðL=�Þ with the correlation length
�� ��� applying near the critical point. The best scaling
collapse (Fig. 5) is achieved with � ¼ 1:00� 0:02, con-
sistent with � ¼ 1 for the Ising model.

In fact, the critical ratios themselves are known exactly
from conformal field theory [29]. Even though the
Gaussian and Ising actions decouple at z1 ¼ 0, the fields
still satisfy a nontrivial ‘‘gluing condition.’’ If Wx (say) is
odd, then the �i satisfy antiperiodic boundary conditions

in the y direction, and ~hðx; yþ LÞ � ~hðx; yÞ is half-integer.
In the field theory limit, we have at the decoupling point

ZWxodd;Wyeven ¼ ZIsing
PA ZGaussian

1=2 ; (9)

where ‘‘P’’ (‘‘A’’) denotes the (anti-)periodic boundary
conditions in the Ising part, and 0 (1=2) denotes
(half) integer winding in the bosonic part. For the Ising

model on a square torus, ZIsing
PP =ZIsing

AP ¼ 1þ 2#2ð0; e��Þ=
#3ð0; e��Þ ¼ 2:681 79 . . . , where the #jðz; qÞ are the stan-
dard Jacobi theta functions. The Gaussian contribution to �

is #3ð��=2; e��2J=2Þ=#3ð0; e��2J=2Þ, equal to unity to the
fifth significant digit at J ¼ Jc, and increasing to one in the
region of interest J < Jc. Thus the ratio � at the Ising
critical point is close to �c ¼ 0:3729. In Fig. 4 the values
of � at the crossings are indeed approaching �c with
increasing system size.
In conclusion, we have shown that a two-dimensional

XY system supporting half-vortices and strings has unusual
critical behavior driven by the interplay of these two
types of defects. The same physics is expected to play a
role in the (1þ 1)-dimensional quantum problem (see
Refs. [12,17]), where there is the additional freedom of
lattice filling to explore. In three dimensions [or the
(2þ 1)-dimensional quantum problem] the analog of the
coupling between the half-vortices and the disorder varia-
bles of the Ising model is an Ising gauge charge carried by
half-vortex lines. The consequences of this coupling will
be explored in future work.
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