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A fluid of spheroids, ellipsoids of revolution, is among the simplest models of the disordered matter,

where positional and rotational degrees of freedom of the constituent particles are coupled. However, while

highly anisometric rods, and hard spheres, were intensively studied in the last decades, the structure of a fluid

of spheroids is still unknown. We reconstruct the structure of a simple fluid of spheroids, employing direct

confocal imaging of colloids, in three dimensions. The ratio t between the polar axis and the equatorial

diameter for both our prolate and oblate spheroids is not far from unity, which gives rise to a delicate

interplay between rotations and translations. Strikingly, the measured positional interparticle correlations

are significantly stronger than theoretically predicted, indicating that further theoretical attention is

required, to fully understand the coupling between translations and rotations in these fundamental fluids.
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During recent decades, significant scientific interest has
focused on fundamental studies of simple fluids, composed
of spherical particles [1–3]. However, much of the rich
behavior of real atoms and molecules stems from their
spherically anisotropic shapes and interaction potentials
[4]; perfect spheres are inappropriate as a model for these
systems. The thermodynamical state of a fluid of particles
interacting through short-range repulsions, is determined
by the amount of free volume, which is available for each
individual particle; this free volume, for spheroids, is a
nonanalytic function of the aspect ratio [5] t, for t ¼ 1.
Thus, the fluid structure may possibly exhibit a similar
nonanalyticity; this suggests that the collective behavior
of nearly spherical ellipsoids is different from that of the
simple spheres. Several theoretical models [6–9] have been
suggested in recent decades to describe fluids of ellipsoidal
particles. However, direct experimental structural studies
of dense bulk [10] fluids of ellipsoids, with the positions
and the orientations of individual particles resolved, are
still absent [11,12]. Thus, the structure of these basic and
fundamental fluids remains obscure.

We form a dense fluid of ellipsoids, with an aspect ratio
of t ¼ 1:6 and measure its structure, detecting the real-
space positions of all particles in motion, in three spatial
dimensions. We quantify the short-range structure and
correlations in our fluids, employing the experimental
radial distribution function [2] gðRÞ. These gðRÞ, obtained
at several different particle densities, demonstrate that the
positional correlations in our system are much more pro-
nounced than theoretically predicted. Moreover, we ob-
serve a similar increase in positional correlations also for
the oblate t � 0:25 spheroids. We demonstrate that the
increased positional correlations result from coupling
between the rotational and the positional degrees of free-
dom. This coupling does not exist for the spheres; also, for
large t, the rotational degrees of freedom dominate, such

that translations and rotations are, effectively, decoupled.
In our range of moderate t, neither the rotational nor the
positional degrees of freedom can dominate, which gives
rise to a rather complex interplay, beyond common theo-
retical models.
Colloids, micron-sized particles in a molecular solvent,

undergo Brownian motion, such that their free energy is
minimized; thus, colloidal suspensions mimic the collec-
tive behavior of atoms and molecules. Colloids are suffi-
ciently large for optical microscopy; this allows their
behavior to be studied in great detail by confocal micros-
copy, which provides far more precise information, com-
pared to other experimental techniques. We employ the
Nikon A1R resonant laser-scanning confocal system, to
image thousands of fluorescently labeled colloidal parti-
cles in real time, within the bulk of a truly macroscopic
sample, where size effects are entirely negligible.
To form our prolate ellipsoids (PE), we suspend PMMA

[poly(methyl methacrylate)] colloidal spheres, of diameter
� ¼ 2:4 �m, in a solution of PDMS [poly(dimethylsilox-
ane)], which is then crosslinked [12]; our initial spheres are
sterically stabilized by polyhydroxystearic acid (PHSA),
and fluorescently labeled by the Nile red dye, for confocal
microscopy. We stretch the crosslinked PDMS films,
with the particles embedded inside, by a factor of 1.37, at
T ¼ 180 �C, where particles are soft, employing a compu-
terized stretching device. Our device allows the stretching
process to be sufficiently slow, uniform, and accurate,
to avoid film tearing, and to minimize the shape polydis-
persity of the resulting ellipsoids [12]. The particles,
stretched to an aspect ratio of t ¼ 1:6, are released by
chemical destruction of PDMS [12]. To measure the shape
of our particles, we deposit them from mixed-
decahyrdonaphthalene (Sigma-Aldrich, � 98%) onto a
silicon substrate, and obtain scanning electron microscopy
(SEM) images [at 30 keV, see Fig. 1(a)]. The apparent
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average aspect ratio in these images ts ¼ 1:34 corresponds
to the projection of our particles onto the surface of the
silicon substrate; ts sets the bottom limit for t, as some of
the particles may have their long axes oriented at a nonzero
angle to the substrate. If all our particles are randomly
oriented with respect to the substrate, their actual aspect
ratio must be larger, tr � 1:9. The surface-parallel orien-
tation minimizes surface energy, while all other orienta-
tions can only be metastable; thus, the surface-parallel
orientation is, on average, more likely than all other ori-
entations, such that tr sets the upper limit on t. In addition,
we confirm the aspect ratio of our ellipsoids by confocal
microscopy.

To thermalize our ellipsoids, we suspend them in a
mixture (18:22:60, by mass) of cis-decahydronaphthalene
(Fluka, � 98%), tetrahydronaphthalene (Sigma-Aldrich,
� 99%) and tetrachloroethylene (Sigma-Aldrich,
� 99:5%). Our particle preparation process damages parts
of the steric PHSA layer [13]; to stabilize our particles by
short-ranged screened Coulombic repulsions [14], we in-
troduce 70 mM aerosol OT (AOT, or dioctyl sodium sulfo-
succinate, Sigma-Aldrich, � 98%) to the suspension. Our
mixed solvent matches the refractive index of the particles,
which allows confocal imaging deep into the bulk of the
samples. In addition, the density of our solvent is only
slightly lower than the gravimetric density of our particles,
such that the sedimentation, in the field of gravity, is bal-
anced by the osmotic pressure. Thus, the particles form a
stable density profile within the capillary, which does not
change on a scale of several weeks, indicating that thermo-
dynamical equilibrium was attained.

To reconstruct the structure of the fluid, we collect
a stack of confocal slices through the sample,
using a 100x oil-immersion objective. Our voxel size
0:08� 0:08� 0:3 �m3 slightly oversamples beyond the

optical resolution of 0:11� 0:11� 0:34 �m3; this im-
proves the accuracy of the particle tracking algorithm,
which is based on the PLuTARC code [15], generalized
here for tracking of ellipsoids. A two-dimensional slice
through an ellipsoidal particle is an ellipse. The algorithm
first detects the centers and orientational angles of all such
ellipses, in each of the two-dimensional confocal slices.
Then, the code links between centers of ellipses, which
belong to adjacent slices, based on the lateral separation
and the orientation of these ellipses; this provides the
(x, y, z) coordinates of the center of each ellipsoid in our
system.
To determine the local volume, which is available for

each individual particle, we perform Voronoi tessellation
[16] of our sample; the Voronoi cell of the ith particle is the
locus of all points, which are located closer to the center of
this particle, than to any other particle in the system. To
estimate the local volume fraction of the colloids �, we
divide the single-particle volume v ¼ �b3t=6 by the vol-
ume of its Voronoi cell, where b ¼ 2:1 �m is the short axis
of our PE. The probability of observing a certain value of�
in our system is almost perfectly Gaussian, as shown in
Fig. 1(b); this is typical for fluids at low density, far from
the glass transition [2]. The peak position of this distribu-
tion corresponds to the average volume fraction � at a
certain height z above the bottom of the sample. Thus,�ðzÞ
measures the density profile of colloids, which is deter-
mined by the balance between gravity and osmotic pres-
sure [17]; a typical�ðzÞ is shown in Fig. 1(c). The structure
of the fluid at a given height is fully determined by the
local value of �ðzÞ. Thus, each single sample with a
thermodynamically stable density profile, allows the fluid
structure for a range of densities to be measured.
To quantify the local structure of the fluid of PE, we

obtain the radial distribution function gðrÞ, which is pro-
portional to the probability of finding two particles, with
their centers separated by a distance r; this function is
normalized such that it is equal to 1 for an ideal gas, where
particles are uncorrelated. Our particles do not interpene-
trate; thus, gðrÞ is identically zero for r < b; see Figs. 2(a)
and 2(b), where the experimental gðrÞ, at two different
volume fractions, are shown in solid symbols. The peaks
of gðrÞ correspond to the coordination shells, which sur-
round each particle in the fluid. Fluids are characterized by
short-range, exponentially decaying, positional correla-
tions between the constituent particles; thus, for high r,
the coordination shells are totally smeared by thermal
fluctuations, such that gðrÞ ¼ 1, as in the ideal gas. The
rotational anisotropy of our ellipsoids may, naively, be
expected to smear the shell structure of the fluid; however,
the 3rd and the 4th coordination shells are clearly distin-
guishable in the experimental gðRÞ. This indicates that
non-negligible positional correlations are present; these
correlations increase with the volume fraction �, which
is typical for simple fluids [2].

FIG. 1 (color online). (a) SEM image of our prolate ellipsoids.
(b) The experimental probability distribution for the local vol-
ume fraction values � (solid symbols), at a given height z above
the bottom of the sample, is fitted (red curve) by an asymmetric
double sigmoidal function, which is roughly Gaussian. A typical
thermodynamically stable density profile �ðzÞ, obtained from
the peak positions of Pð�Þ, is shown in (c); the red curve is a
guide to the eye. The z regions, used in the analysis, are marked
by horizontal error bars; the vertical error bars show the varia-
tions between our samples.
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Our PE are only slightly anisotropic; thus, this anisot-
ropy may be considered a small perturbation, with respect
to the well-known fluid of simple hard spheres. To better
understand the full shape of our experimental gðrÞ, we fit to
it the theoretical gðrÞ of hard spheres, obtained in the well-
known Percus-Yevick approximation [2]; to have the theo-
retical curve match our experimental data, we set both the
diameter of the theoretical (effective) spheres, and their
volume fraction, as free parameters. Remarkably, as also in
earlier x-ray scattering studies of nonspherical particles
[11], which involved multiple free parameters and rather
nontrivial approximations, a good match is found between
the theoretical curves and the experimental data, at all
experimental �, as shown in Figs. 2(a) and 2(b). The fitted
diameter and volume fraction of the effective hard spheres
are higher than the experimental ones. For example, to fit
the data in Fig. 2(a), we had to set the diameter of the
effective hard spheres to �eff ¼ 2:7 �m, while their vol-
ume fraction is set to �eff ¼ 0:4. This value of �eff is
higher than �, the diameter of our initial spheres, which
we have stretched into ellipsoids, subject to volume pres-
ervation; thus, the anisotropy of our particles, albeit very
small, changes the fluid structure in a nontrivial way.
Unfortunately, the exact interpretation of the fitted values

of �eff and �eff is not clear; in particular, �eff ¼ 0:4 in
both Figs. 2(a) and 2(b), while the actual volume fraction
of the experimental ellipsoids grows by almost 20%. This
discouraging behavior of �eff is hardly surprising; the
effective hard spheres model neglects all orientational
correlations which may exist in our system, where posi-
tional and rotational degrees of freedom are coupled. In
particular, this theoretical model assumes that the likeliest
distance between the particles is independent of their vol-
ume fraction �eff; this is in contrast with the real-life
ellipsoids, where nearest neighbors (NNs) can assume
roughly parallel orientations, to decrease the distance be-
tween their centers of mass. Recently, a very simple theo-
retical model [9] was suggested to account for this effect.
This model regards the ellipsoids, as if they were entrapped
inside effective spheres, which, at very low �, allow free
rotation. The spheres shrink with�, which accounts for the
increase in local orientational correlations between the
actual ellipsoidal particles. This simple argumentation
was recently shown [9] to exactly reproduce the structure
of a fluid of highly anisometric colloids, where the rota-
tional degrees of freedom are effectively frozen [18].
However, for the very modest aspect ratio of our PE, the
interplay between rotations and translations is far more
intricate, such that the current model totally fails to repro-
duce the experimental gðrÞ, as shown in the dash-dotted
curve, in Figs. 2(a) and 2(b). Thus, a more accurate treat-
ment of the correlations between rotations and translations
is necessary.
To directly account for the coupling between rotations

and translations, we adopt an explicit solution for ellip-
soids [7] of the Ornstein-Zernike equation, in the Percus-
Yevick (PY) approximation [2,3]. This model, albeit
approximate, is in a good agreement with computer simu-
lations of ellipsoids [8,19–21]. On a qualitative level, the
resulting function, shown in Figs. 2(a) and 2(b) (in solid
red line), reproduces all features observed in the experi-
mental gðrÞ. Yet, strikingly, these theoretical gðRÞ signifi-
cantly underestimate the positional correlations in our
system, as the oscillations in gðrÞ decay much faster,
than experimentally observed. This discrepancy cannot
be eliminated by tuning b, �, and t to any reasonable
value [14].
To further test the generality of our results, we form a

fluid of oblate ellipsoids (OE), such that t � 0:25. For that
purpose, we compress our PDMS films under load, instead
of stretching them; the sample preparation is, otherwise,
the same as above. Unfortunately, our oblate ellipsoids are
not as monodisperse, in terms of their aspect ratio, as the
PE. The gðrÞ for the OE are shown in Fig. 3, together with
the theoretical fits. Strikingly, while the model of effective
hard spheres matches nicely the experimental data, the
explicit PY theory of hard ellipsoids [7] significantly
underestimates the extent of positional correlations in our
system; this is even more surprising, in view of the shape

FIG. 2 (color online). The experimental radial distribution
function gðrÞ of PE (solid symbols), is shown for (a) � ¼ 0:31
and (b) � ¼ 0:26; r is normalized by the short axis of our
ellipsoids b. The simple hard spheres model (blue dashes)
matches the experimental data, albeit for an unreasonable set
of free parameters. A more advanced model [9] (olive dash-
dotted curve), describing our particles, as if these were entrapped
in distortable spheres, such that their rotational degrees of free-
dom are not completely neglected, is in very poor agreement
with the experimental gðrÞ, indicating that the coupling between
rotational and positional degrees of freedom must be explicitly
taken into account. The gðrÞ obtained by such explicit calcula-
tion [7] (solid red curve), is closer to the experimental data; yet,
this model significantly underestimates the extent of positional
correlations.
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polydispersity of our OE, which is expected to diminish
correlations. Thus, even in a very simple fluid of spheroids,
the positional correlations are significantly underestimated
by the common theoretical models, for both oblate and
prolate particles. This discrepancy is in contrast with the
perfect agreement between experimental gðrÞ and PY pre-
dictions, for colloidal hard spheres [1]; thus, it is the
coupling with the rotational correlations, which must be
responsible for the observed discrepancy. In particular, a
possible overestimate of the orientational correlations may
increase the theoretical free volume available for particle
translations; this would diminish the theoretical positional
correlations, compared to the experimental ones.

To test this hypothesis, we directly measure the orienta-
tions of our PE. The orientation of each particle is deter-
mined, in the lab frame, by two angles, � and’. We choose
� to be the inclination with respect to the optical axis of the
microscope; ’ is the azimuth. We measure the radial
distribution function gðr;�’Þ of particles, within an opti-
cal slice through the system, which have the difference
between their azimuths �’ fixed at a certain value.
At small r, parallel orientations of NNs are more likely.
The abundance of NNs which have an angle �’ between
their azimuths, normalized by the abundance of
NNs which both have identical azimuths fzð�’Þ ¼
ðr0 � bÞ�1

R
r0
b gðr;�’Þ=gðr; 0Þdr is shown in Fig. 4(a).

Interestingly, these data are in perfect agreement with the
PY theoretical prediction for the PE [7,22], obtained with
no free parameters; here, arbitrarily, r0 ¼ 1:3b. Thus, the
theoretical coupling between rotations and translations
matches the experimentally observed one. To measure
the orientational correlations in a more delicate way, we
define �ð�’Þ ¼ R½gðr;�’Þ=gðrÞ � 1�2dr, where gðrÞ is

the �’-averaged radial distribution function, as in
Fig. 2, and the integration is carried out over the first NN
shell [23]; importantly, the quadratic power in the inte-
grand makes � measure both the correlations and the

anticorrelations with the same sign. Strikingly, the theo-
retical curve, which is roughly fourfold symmetric, signifi-
cantly overestimates the strength of orientational
correlations for �’ ¼ 90�, as shown on a polar plot in
Fig. 4(b). This may support our hypothesis that the over-
estimate of orientational correlations by the PY model
results into an underestimate of the positional correlations
between the particles. Future studies should allow the full
three-dimensional orientational correlations in our system
to be measured and compared with the theoretical predic-
tions, providing a baseline for a better understanding of
these fundamental fluids.
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