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We show, that stabilization of a dynamical system can annihilate observable information about its

structure. This mechanism induces critical points as attractors in locally adaptive control. It also reveals,

that previously reported criticality in simple controllers is caused by adaptation and not by other controller

details. We apply these results to a real-system example: human balancing behavior. A model of predictive

adaptive closed-loop control subject to some realistic constraints is introduced and shown to reproduce

experimental observations in unprecedented detail. Our results suggests, that observed error distributions

in between the Lévy and Gaussian regimes may reflect a nearly optimal compromise between the

elimination of random local trends and rare large errors.
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In many complex systems, extreme events occur more
frequently than expected for Gaussian distributed event
magnitudes. Instead, distribution tails are well described
by power laws. Examples include earthquake energies,
velocity changes of particles in turbulent fluids [1], and
neuronal activity [2]. Power-law scaling of spatial and
temporal correlations reflect a self-similar structure of the
respective quantity. They have been linked to critical points
where a characteristic correlation length diverges. Critical
points at phase transitions or at stability boundaries in
intermittent systems require fine tuning of a parameter.
An alternative mechanism is self-organized criticality
(SOC) which can evolve nonlinear systems with many
degrees of freedom into a critical state [3]. Spatiotem-
poral scaling was also found in goal directed behavior
like in stock market log returns [4] and human motor
control during upright standing [5] or stick balancing [6].
It is not clear, how previous explanations for criticality are
applicable in control systems. Foremost, extreme fluctua-
tions appear opposite to optimal control and for returns are
suspected to reflect market inefficiencies [4]. Here, we
investigate the relationship between control, criticality,
and efficiency. We focus on human virtual stick balancing
as a paradigmatic example of real adaptive control and
highlight results that are potentially relevant for a wider
range of systems.

Previously, critical control dynamics were demonstrated
in discrete-time control systems that are optimal given the
only constraint, that they rapidly and permanently adapt
[7–9]. This novel approach combines the simplicity of
intermittent systems with self-tuning dynamics like in
SOC. While the power-law scaling in human balancing
error distributions can be reproduced, other features are
captured at most qualitatively [8]. No explanation was
given as to why power-laws were stable over training
days under stationary conditions [8] that do not require
rapid adaptation. Moreover, serious questions regarding
the realism and generality of this class of models remain.

To assess these problems at first we demonstrate, that
locally adaptive stabilization creates critical points under
quite general assumptions about the systems dynamics.
Thus, themechanism is not restricted to the aforementioned
models and can be applied tomore realistic ones or possibly
to different systems. We then present a continuous-time
model which closely reproduces human balancing dynam-
ics and discuss, why it represents the minimal required
generalization to address serious shortcomings of previous
models. Finally, we show that power-law error distributions
are not generally opposed to, but in contradistinction may
be a signature of highly efficient control.
Stabilizing control annihilates exploitable information.

To quantify this effect, consider a system close to a fixed
point with expected dynamics without control

_yðtÞ ¼ #yðtÞ: (1)

yðtÞ denotes the systems deviation from some target value
(e.g., a pendulums upright position) and # is a hidden
parameter [10]. Assume, that the system is observed at a
given location y. The observer has access to noisy obser-
vations of y and _y with respective probability distributions
pð _yÞ and pðyÞ. The noise may be either inherent to the
system or to the measurement process. The likelihood
function of # given an observation at the location y is

L ð#Þ ¼ pðy; _yj#Þ ¼ pð _yjy; #Þpðyj#Þ ¼ pð _yjy; #ÞpðyÞ:
(2)

Further assume, that _y at the observed location is Gaussian
distributed:

_yjy; # �N ð#y;� _yÞ: (3)

Maximizing the log likelihood with respect to # gives the
unbiased estimator [11]

~# ¼ _y

y
: (4)
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The expected amount of information about # that an ob-
servation contains may be expressed using Fisher informa-
tion:

I ¼ �
�
@2

@#2
lnLj#

�
¼ hy2i

�2
_y

: (5)

The mean square error of the estimator is given by the
Cramer-Rao bound

Var ð ~#Þ � 1=I ; (6)

which represents an uncertainty principle [12]. When ob-
serving the system at the origin such that hy2i ! 0, the
susceptibility of the estimator to random fluctuations di-
verges. Hence, stabilizing control added to Eq. (1) evolves
the system towards a critical point. Consequent control
errors could be reduced using additional independent ob-
servations. However, to do this optimally the controller has
to know a priori the exact form of a possible state- or time
dependency in #. In the following, we settle for the mini-
mal assumption that # can be considered constant over a
small set of subsequent observations.

Now consider the control problem posed by the stochas-
tic differential equation

_yðtÞ ¼ 1

�
yðtÞ þ �ðtÞ; (7)

where fluctuations grow exponentially with time con-
stant �. �ðtÞ is Gaussian white noise, i.e., h�ðtÞ�ðt0Þi ¼
�2�ðt� t0Þ. A real controller has a finite reaction time
making stabilization nontrivial. It has to remove a predic-
tion ~yðtÞ of yðtÞ based on observations only up to some
earlier time t� tr. Furthermore, a controller cannot re-
move ~yðtÞ from Eq. (7) completely and instantly without
reaching infinite velocities. Instead, it may continuously
remove a term proportional to ~yðtÞ. To stabilize the system,
the proportionality factor has to be bigger than 1=�. Thus,
we get

_yðtÞ ¼ 1

�
yðtÞ � � ~#ðtÞ~yðtÞ þ �ðtÞ (8)

with ~#ðtÞ as estimator for 1=� and a gain factor � > 1.
Since the controller has already determined its own actions
for all times t0 < t, the probability density pðyðt0Þjyðt� trÞÞ
is a Gaussian whose mean evolves according to Eq. (8),
dropping �ðtÞ. Solving for yðtÞ with known actions for
ft0jt� tr � t0 < tg and initial condition yðt� trÞ yields
the prediction

~yðtÞ¼EðyðtÞjyðt�trÞ;�;f ~#ðt0Þg;f~yðt0ÞgÞ

¼e
~#ðtÞtr

�
��

Z t�0

t�tr
e
~#ðtÞðt�tr�t0Þ ~#ðt0Þ~yðt0Þdt0þyðt�trÞ

�
:

(9)

We now focus on an estimator for the hidden parameter
1=�. The exact continuous record log-likelihood function
[13] for Eq. (8) can be derived analytically:

lnLð1=�Þ ¼
Z t

t0

yðt0Þ
��2

ð _yðt0Þ þ � ~#ðt0Þ~yðt0ÞÞdt0

� 1

2

Z t

t0

yðt0Þ2
�2�2

dt0: (10)

Since we are interested in the drift without control, the
bracket in the first term contains the observed velocity
minus the controller’s contribution. Maximizing Eq. (10)
with respect to 1=� yields the estimator

~#ðtþ trÞ ¼
R
t
t0
yðt0Þð _yðt0Þ þ � ~#ðt0Þ~yðt0ÞÞdt0R

t
t0
yðt0Þ2dt0: : (11)

Equations (8), (9), and (11) define a delayed predictive
continuous control system. By setting t0 to t� tm in
Eq. (11), we can restrict the integration window to an
interval of fixed length tm. While this constraint is suffi-
cient to induce criticality [14], we here introduce exponen-
tial forgetting to better approximate real forgetting curves
[15]. Keeping t0 fixed, e.g., at�1, exponentially decaying
factors expðt0=�mÞ with time constant �m under both inte-
grals in Eq. (11) create a smooth shifting integration
window. The numerator and denominator can then be ex-
pressed in differential form:

_Aðtþ trÞ ¼ �Aðtþ trÞ=�m þ ð _yðtÞ þ � ~#ðtÞ~yðtÞÞyðtÞ;
_Bðtþ trÞ ¼ �Bðtþ trÞ=�m þ yðtÞ2;
~#ðtþ trÞ ¼ Aðtþ trÞ

Bðtþ trÞ : (12)

This form of the estimator is essentially the quotient of
two low-pass filters. Note, that B will always be positive
if y 6�0.
While this model is consistent with a previously reported

discrete-time model by means of a limiting case using a
stroboscopic mapping [9], it represents a fundamental
improvement. In prior models [7–9], controllers com-
pletely removed the expectation value of y given its m
prior values at every time step. Then, control errors follow
a probability distribution function (pdf) whose tail obeys a
power-law pðyÞ / jyj�� with exponent � ¼ m. Many real
control systems including human motor control are not
time discrete and movements are subject to limitations
like maximum forces. Even when these constraints are
optimized for, a real controller will not reach the target
instantly. While we do not consider the physical movement
limitations on our current level of abstraction, the control
gain represents a first order approximation to these effects.
Human behavior in this paradigm also shows no signs of
discontinuous control ([9,16]), rendering a comparison of
time scales with discrete-time models impossible. Finally,
the new model uses a forward model to correctly predict
the evolution of the system during the reaction time, con-
sistent with the literature [16,17] and opposed to previous
models. Since the controller is adaptive, the forward model
may be a preexisting template.
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The system represented by Eqs. (8), (9), and (12), re-
produces many features of human balancing behavior.
Figure 1 shows a comparison with experimental time series
from several initially naive subjects [8]. The task was to
minimize the distance jyj between a target T and a mouse
cursor M that were presented on a computer screen.
Without control, jyj grew exponentially. M was moved
proportional to the position of the subject’s hand using a
computer mouse. Model parameters were chosen to match
the average observed behavior and experimental setting.

Figure 1(a) shows the complementary cumulative distri-
bution (ccdf) FcðyÞ. Target-mouse distance distributions
for all subjects strongly deviate from Gaussians, exhibiting
power-law tails with pdf scaling exponents � in the range
of three to five.

In the model, � increases as the controller’s memory �m
is increased. Longer reaction times tr decrease the expo-
nent. Increasing gains � increase the impact of estimation
errors, causing a decrease in � until the system becomes
uncontrollable. The distribution of small jyj is dominated
by additive noise. Since the largest values of jyj all belong
to one peak in the time series, Fc lowers abruptly.
Figure 1(b) shows experimental power spectra which are

constant for low frequencies. Above 0.1 Hz, spectra ap-
proximate broken power laws. The first scaling exponents
�1 are above 1=2 and below two and the second ones �2

above two and below four. A knee is observed just below
5 Hz. The spectra level near the Nyquist frequency.
Realistic �1 are found for a combination of controlling

cautiously with � just above one and adapting fast with
�m � tr. This strongly reduces correlation strengths over
less than a second, but leaves small correlations over few
seconds. The knee position depends on the reaction time. tr
in between 170 and 200 ms yield good fits, consistent with
human reaction times. The second regime represents fre-
quencies above the controller’s active response, with �2

being parameter independent.
Assuming, that the movement apparatus which is not

modeled in detail is well optimized given its physical
constraints, the only unexplained source of global ineffi-
ciency may be the controllers constrained memory. This
problem is resolved by a minimum in the variance of y
found for memory time constants �m close to the reaction
time tr. Figure 2(a) shows the variance in dependence of
the ratio between reaction time and memory length for dif-
ferent reaction times. For small �m, the variance diverges.
The minimum’s exact position is parameter-dependent: the
optimal �m increases slightly slower than tr.
Figure 2(b) shows the pdf tail exponents � correspond-

ing to Fig. 2(a). Positions where variances are minimal are
marked with error bars. Here, � is just below five for all
conditions. However, because correlation lengths increase
with tr and tm, distributions may appear different for
limited data set sizes.
The presented effects are robust to parameter changes in-

cluding tr ! 0.�may also be time dependent. Introducing a
time dependent � creates additional higher order temporal
correlations. State dependencies reduce the increase of �
with �m and cause a clustering of control errors. Passive
damping increases �2. Further scaling properties similar to
postural sway and stock markets can be found in [14].
Human behavior is often described as adaptive, predic-

tive control [17]. We have demonstrated, that rapidly
adaptive stabilization annihilates information, creating at-
tractive critical points [Eq. (5)]. Facing an unknown situ-
ation, a reasonable strategy is to make only minimal
assumptions about the controlled system. As we have
shown, this leads to a simple system adapting to local
linear trends which for the first time quantitatively repro-
duces human balancing time series. The controller has only

FIG. 1. Comparison of the model (thick black lines) with
previously published virtual balancing time series (thin grey
lines) [8] for several subjects, for each of which combined trials
of several days totaling in few hours of data are shown. The
simulation consists of 100 trials of 163 hours length total.
Controller parameters in each trial were drawn from Gaussians
with means tr ¼ 170 ms, � ¼ 1:07, �m ¼ 140 ms and 15%
variance each to simulate the trial-to-trial variations observed
experimentally. � ¼ 250 ms. � ¼ 5 s�0:5 allows for comparison
using a scaling of 1 pixel ¼ 1 for experimental jyj. Time dis-
cretization: 11.8 ms. (a) Complementary cumulative distribution
Fc of the absolute balancing errors jyj. Diagonal line: a power
law in the pdf pðyÞ ¼ jyj�� corresponds to FcðyÞ ¼ jyj��þ1;
fitted to the simulation using the Hill estimator [1]. Horizontal
line: estimator cutoff [14]. Dotted line: Gaussian with the same
mean and variance as the simulated time series. (b) Power
spectra calculated using Welch’s method with a Hanning win-
dow and binned logarithmically. The scaling exponents �1;2 have

been estimated using linear regression.
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three free parameters: reaction time, control strength, and
integration time. The time constant of the system to be
controlled is fixed by the experimental condition. The
variance of the driving noise only sets the absolute scale.
Experimental findings were consistent with fast adaptation
and low control gains. The latter is consistent with humans
trying to minimize amplification of control errors due to
fast movements (Fitts’ law [18]). Criticality holds over a
realistic range of control dynamics close to, but not exactly
on the critical point.

Surprisingly, fast adaptation minimizes mean balancing
errors by tolerating rare, large errors in favor of the removal
of random trends (Fig. 2). Corresponding pdf scaling ex-
ponents lie in the highest range of those observed experi-
mentally. Accordingly, different error distributions are ex-
pected for different tasks or objective functions, but not
because the controller accounts for the systems stationarity.

The finding, that heavy tailed distributions of control
errors cannot generally be attributed to inefficient control
may be relevant to other systems. For example, the efficient
market hypothesis (EMH) claims, that markets transform
information into price changes such that risk-free profit
becomes impossible. This implies, that price changes that

would have been caused by the predictable behavior of a
subset of market participants become cancelled by the
actions of some more ‘‘intelligent’’ speculators such, that
the predictability is removed from the price time series. If
the speculators collectively adapt to predictabilities (e.g.,
by estimating the parameters underlying the collective
dynamics of predictable participants) this process is a clear
instance of adaptive control. According to our results the
idea, that the EMH is in conflict with the heavy tails of
(log-) price change distributions could then be wrong. In
sharp contrast the heavy tails may reflect highly efficient
control based on adaptation to local trends. One may even
speculate, that dynamical minimization of local informa-
tion might be a principle for SOC-like criticality even more
general than the presented paradigm.
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FIG. 2. Statistical properties depending on the ratio between
the memory time constant �m and the reaction time tr ¼ 300,
200, and 100 ms (different curves top to bottom). � ¼ 250 ms,
� ¼ 1 s�0:5, g ¼ 1:05. Curves are averages from 50 simulations
of length 2� 107 s with discretization step 10 ms. Dashed
contours: possible range for our subjects. (a) Variances corre-
spond to mean squared control errors. Vertical lines: minima.
Symbols: �m ¼ 1 s (triangle), 10 s (diamond), a controller using
the true � instead of Eq. (12) (circle). (b) Corresponding ex-
ponents �. Error bars: positions of minimal variances.
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