
Universal Critical Behavior of Curvature-Dependent Interfacial Tension

Subir K. Das1,2 and Kurt Binder2

1Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
2Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany

(Received 22 August 2011; published 30 November 2011)

From the analysis of Monte Carlo simulations of a binary Lennard-Jones mixture in the coexistence

region, we provide evidence that the curvature dependence of the interfacial tension can be described by a

simple theoretical function �ðRÞ�2 ¼ C1=½1þ C2ð�=RÞ2�, where � is the correlation length and R is the

droplet radius. The universal constants C1 and C2 are estimated. In the model, a Tolman length is strictly

absent, but, since its critical behavior is believed to be much weaker than �, we argue that it only provides

a correction to scaling and does not affect the leading critical behavior, which should be described by the

above function for any system in the Ising universality class. The large value of C2 ’ 32 implies that

conventional nucleation theory becomes inaccurate even for a significantly large droplet radius.
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Introduction.—Curved interfaces between coexisting
phases are ubiquitous in nature [1–6]. E.g., in nanoscopic
systems, for a wide range of compositions of different
species, the minority component will exhibit a droplet
structure with a well-defined radius of curvature R.
Curved interfaces can also be seen in nanoscopic slit pores
or cylindrical pores in wetting and drying phenomena.
Such phase coexistence in porous media has widespread
technological applications ranging from oil recovery to
devices in nano- and microfluidics [5,6]. Quite naturally,
understanding the properties of curved surfaces is of im-
mense importance and indeed a longstanding difficult
problem, particularly when one considers nucleation phe-
nomena [1,2].

A central problem in this context is the understanding of
the curvature dependence of the interfacial tension �ðRÞ in
the vicinity of a critical point. (Only near criticality can a
continuum description of �ðRÞ work, since far below criti-
cality the critical nucleus contains only of the order of 100
molecules and nonuniversal details matter). The critical
behavior of flat (R ! 1) interfacial tension is rather well-
studied [7,8], its singularity as a function of the reduced
temperature t [ ¼ ðTc � TÞ=Tc, Tc being the critical tem-
perature] being

�ð1Þ � � � �0t
2� (1)

in three spatial dimensions (d). In Eq. (1), � is the exponent
for the correlation length �:

� � ��
0 t

��; (2)

where ��
0 is the critical amplitude when Tc is approached

from below and the 3� d Ising universality value for � is
’ 0:63. However, related knowledge about �ðRÞ [9–13] is
rather poor.

Traditionally, it has been assumed that, to the leading-
order correction, �ðRÞ has the form [9]

�ðRÞ ’ �ð1Þ
1þ 2 �

R

; (3)

where � is referred to as the Tolman length. Physically, � is
interpreted as the separation between the equimolar surface
and the surface of tension [10]. Recently [13], it has been
argued that the critical singularity of � can be described as
(� ’ 0:325 being the order parameter exponent and �0 a
critical amplitude)

� � �0t
�ð���Þ: (4)

On the other hand, there is evidence [12] that � is very
small (which corresponds to a very small value for �0), of
the order of 10% of intermolecular distances, only about
30% below Tc. Thus, the practical relevance of Eq. (3) is
somewhat uncertain, even though the value of �0 could be
larger for a highly asymmetric system [13(c)].
While, in general, the equimolar surface and the surface

of tension are expected to be different, for models having
Ising-like up-down symmetry, they should coincide, so that
� ¼ 0. For such symmetric cases, of course, it is natural to
write [11,12]

�ðRÞ ’ �ð1Þ
1þ 2ð‘RÞ2

; R ! 1; (5)

where ‘ is a parameter that also has the dimension of
length. In this Letter, we address the validity of Eq. (5)
by using a phase-separating symmetric binary mixture.
Further, the critical behavior of the length ‘ is investigated.
A knowledge of the latter, combined with the universal
critical amplitude ratios, allows us to empirically construct
a universal scaling function for the critical behavior of
�ðRÞ containing universal constants. We expect this uni-
versality to be valid even for asymmetric situations where
� � 0, since the divergence of ‘ is much stronger than that
of �. We also discuss the consequence of our findings in the
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context of nucleation barriers, which are of direct experi-
mental relevance.

Model and method.—We employ a 3� d binary
(Aþ B) fluid model where particles at positions ~ri and
~rj, confined in a periodic box of volume V (¼ L3),

interact via

uðr ¼ j~ri � ~rjjÞ ¼ UðrÞ �UðrcÞ � ðr� rcÞ dUdr jr¼rc ; (6)

within a distance r < rc. In Eq. (6), UðrÞ is the standard
(12, 6) Lennard-Jones potential with pairwise interaction
strength �AA ¼ �BB ¼ 2�AB ¼ � and interparticle diameter
dAA ¼ dBB ¼ dAB ¼ d0. This choice yields an Ising-like
perfectly symmetric model that exhibits a liquid-liquid
transition. We study the system at a high density � ¼
Nd30=V ¼ 1:0 (N ¼ NA þ NB, N� being the number of

particles of species �) so that there is no coupling between
liquid-liquid and gas-liquid transitions, and the tempera-
ture range is chosen such that crystallization does not
occur. The cutoff distance rc is set to 2:5d0; further, �,
kB, and d0 are set to unity. The phase behavior (with
Tc ’ 1:423) for this model is well-studied [14–16]. With
respect to its critical behavior, it is a prototype of the Ising
universality class, describing critical phenomena in sys-
tems such as anisotropic magnets, mixtures, and the liquid-
vapor transition.

We adopt an efficient successive umbrella-sampling [17]
Monte Carlo [18] method in the semigrand canonical [19]
ensemble. This allows us to sample the probability distri-
bution PðxAÞ as a function of concentration xA of A parti-
cles. PðxAÞ has a double peak structure in the two-phase
region, the locations of the peaks giving points on the
A-rich or B-rich branches of the coexistence curve.
The concentration-dependent effective free energy density,
relative to the value at the bulk coexistence, can be
obtained as

fLðxA;TÞ ¼ � kBT

V
ln½PðxAÞ=PðxcoexA Þ�; (7)

an example of which is shown in Fig. 1(a). There, the
minimum on the left-hand side corresponds to a pure
B-rich phase at the bulk coexistence composition.
Gradually, with the increase of xA, at a supersaturated
concentration, marked by an arrow, a spherical droplet of
the A-rich phase nucleates (marking the evaporation-
condensation transition) in the background of the B-rich
phase. The size of this droplet increases as one moves
further before a cylindrical droplet becomes more stable
at a higher concentration, marked by another arrow.
Finally, close to the critical concentration (xA ¼ 1=2),
one obtains a slab geometry. The flat part of the free energy
(fhump) corresponds to the excess surface free energy den-

sity due to two flat interfaces in the slab, which allows us to
calculate the L-dependent flat interfacial tension [20] as

�L ¼ Lfhump=2. An appropriate finite-size scaling analy-

sis [18,21] of �L then gives us �ð1Þ.
To obtain �ðRÞ, we focus on the part of fL where a

spherical droplet is stable and use the principle that the
coexisting phases have equal chemical potential. So, the
task [22] here then is to identify the pure A-rich and B-rich
phases having the same chemical potential as the system
where a spherical A-rich droplet is embedded in the sea of
the B-rich phase. Then, the bulk contribution of the free
energy can be read out, and subtraction of this from the
total would give the excess part coming from the curved
interface. The identification of the concentrations corre-
sponding to the pure phases having the same chemical
potential as the one containing a droplet could easily be
done from the derivative of fL that gives us chemical
potentials relative to the bulk coexistence concentration as

1

kBT
�	ðxA; TÞ ¼

�
@fLðxA; TÞ

@xA

�
T
: (8)

Results.—The critical behavior of �ð1Þ, calculated
from the method demonstrated in Fig. 1(a), is studied in
Fig. 1(b), where it is plotted vs t on a log scale. The
continuous line there is a fit to Eq. (1). The data are quite
consistent with the expectation, and we obtain the ampli-
tude (in Lennard-Jones units) �0 ¼ 3:2.
With the expectation that, for the symmetric model

studied here,� ¼ 0, in Fig. 2, we plot �ð1Þ
�ðRÞ � 1 as a function

FIG. 1. (a) Plot of effective free energy density fLðxA;TÞ vs xA
at T ¼ 1:15 for L ¼ 18. The left arrows mark, respectively, the
evaporation-condensation transition and a transition from spheri-
cal droplet to cylindrical droplet structure. (b) Plot of �ð1Þ vs
t on a log scale. The solid line corresponds to 3:2t2�.
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of 1=R2. Indeed, the linear behaviors for all temperatures
confirm thevalidity of Eq. (5). Ideally, of course, the data for
�ðRÞ from different system sizes L (as indicated next to the
thick lines), at a particular temperature, should superimpose
on a single curve. However, the scatter for differentL values
is due to residual statistical error. Various thin straight lines
in this graph are fits to the simulation data, from the slopes
of which we obtain ‘ as a function of temperature.

In Fig. 3, we plot ‘ as a function of t, on a log scale. The
continuous line there has a power-law form with the Ising
value of the critical exponent for �, with an amplitude
‘0 ’ 0:6. The very nice agreement of the simulation result
with the solid line, at temperatures closer to Tc, strongly
indicates that ‘ diverges at criticality, mirroring the behav-
ior of �. The deviation of the simulation results from the
solid line, starting from about 15% below Tc, is due to
corrections to scaling and is consistent with other studies of
critical phenomena. However, for a more quantitative state-
ment, calculation of � is in order. This we do by assuming
an Ornstein-Zernike form, Sccðq;TÞ ’ kBT
=ð1þ q2�2Þ,
of the relevant concentration-concentration structure
factor, for wave vector q ! 0 and using the values of

kBT
 obtained from probability distribution PðxAÞ as
kBT
 ¼ Nðhx2Ai � hxAi2Þ. In the inset of Fig. 3, we show
the ratio ‘=�, which is seen to remain constant at a value
’ 4 over a wide range of temperatures. This provides the
critical amplitude ��

0 ’ 0:15. The knowledge of �0 and

��
0 then gives us the value of the universal constant,

! ¼ ½4��0ð��
0 Þ2��1 ’ 1:1. While this value is consistent

with an earlier Monte Carlo simulation of a different
system [23], the most recent estimate of ! is ’ 0:87
[24,25]. In view of the fact that we do not have data closer
than 5% to Tc, such a discrepancy is expected.
Using our estimate that ‘ ¼ 4�, from Eq. (5), we obtain

a form for the critical behavior of �ðRÞ as
�ðRÞ�2 ¼ C1

1þ C2ð�RÞ2
; (9)

where C1 ¼ �0ð��
0 Þ2 ¼ 1=4�!, which is thus a universal

constant, namely, [24,25] ’ 0:089, whereas, using the
simulation values of �0 and ��

0 , we obtain ’ 0:075.
While we obtain C2 ¼ 32 by taking ‘=� ¼ 4, it needs to
be checked whether our estimate for this universal constant
is accurate. On the other hand, considering the fact that this
second-order term is also present in an asymmetric model
and the critical divergence of ‘ is significantly stronger
than �, the first-order correction in 1=R can be treated
merely as a correction to scaling in the critical vicinity.
Equation (9) then is a universal form for the critical be-
havior of �ðRÞ, irrespective of whether the system is
symmetric or not. Thus, we propose that Eq. (9) also holds
for the vapor-liquid transition in an asymmetrical model in
the critical region.
In Fig. 4, we plot�ðRÞ=�ð1Þ as a function of the scaling

variable R=�. The continuous line there corresponds to

FIG. 2. Plots of �ð1Þ
�ðRÞ � 1 vs 1=R2 for different system sizes at

three temperatures. The various straight lines are fits to the
data sets.

FIG. 3. Plot of ‘ vs t on a log scale. The solid line corresponds
to 0:6t��. The inset shows a plot of ‘=� as a function of
temperature.

FIG. 4. Plot of �ðRÞ=�ð1Þ vs R=�. The continuous line is the
theoretical form (9), which is compared with the simulation data
(for T ¼ 1:0, we have obtained � from the relation ‘=� ¼ 4 due
to difficulty in getting � at such a low temperature from the
Ornstein-Zernike relation) represented by thicker lines. The
horizontal dashed line corresponds to the CNT. The inset shows
a plot of �F�

Tc
vs ðR�=�Þ2, demonstrating the (significant) reduc-

tion of the nucleation barrier compared to the CNT (dashed
straight line).
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Eq. (9), while the thicker lines are representative simula-
tion results from various system sizes at three different
temperatures. The agreement between Eq. (9) and the
simulation is remarkable. This should be compared with
the dashed line corresponding to the classical nucleation
theory (CNT) failure, which looks quite prominent even for
very large values of R=�. A consequence of the curvature-
dependent surface tension is illustrated in the inset of this
figure in the context of the nucleation barrier �F�. For the
latter, we obtained the form

�F�

Tc

’ 0:37
y2

C2 þ y
; y ¼

�
R�

�

�
2
; (10)

where R� is the size of a critical nucleus. Again, in this plot,
the dashed line stands for the CNT while the continuous
line corresponds to Eq. (10). Because of the large value of
C2 ’ 32, the CNT is expected to be accurate only for very
large values of y. Note that, even though the idea of a
universal scaling function for the nucleation barriers in the
critical region is not new [26], an explicit estimate is given
for the first time.

Summary.—We have studied the curvature-dependent
interfacial tension in a symmetric binary Lennard-Jones
fluid via a successive umbrella-sampling Monte Carlo
method. The analysis of the results, by using a recently
developed powerful method, shows that the leading-order
correction to �ðRÞ is quadratic in 1=R; thus, a Tolman
length is absent. The critical behavior of the length ‘,
defined in Eq. (5), is proportional to the correlation length,
which has a much stronger divergence than the one of
the Tolman length �. We propose a scaling form for the
critical behavior of �ðRÞ containing universal constants.
While the Tolman length would only provide a nonuniver-
sal correction to scaling, this form is expected to be uni-
versal for both symmetric and asymmetric situations. We
have also discussed the consequence of this curvature
dependence in the context of the nucleation barrier. It is
pointed out that the classical nucleation theory fails even
for a very large droplet radius. These results are of great
experimental significance. While existing studies near
Tc (e.g., [27,28]) have only addressed the combined effects
of nucleation and growth, as discussed in [26], an extension
of a recent technique that directly yields the nucleation rate
only [29] to the critical region should be illuminating.
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