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In this Letter, we provide a general methodology to directly measure topological order in cold atom

systems. As an application, we propose the realization of a characteristic topological model, introduced by

Haldane, using optical lattices loaded with fermionic atoms in two internal states. We demonstrate that

time-of-flight measurements directly reveal the topological order of the system in the form of momentum-

space Skyrmions.
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Different phases of matter can be distinguished by their
symmetries. This information is usually captured by lo-
cally measurable order parameters that summarize the
essential properties of the phase. Topological insulators
are materials with symmetries that depend on the topology
of the energy eigenstates of the system [1]. These materials
are of interest because they give rise to robust spin trans-
port effects with potential applications ranging from sen-
sitive detectors to quantum computation [2,3]. However,
direct observation and measurement of topological order
has been up to now impossible due to its nonlocal charac-
ter. Instead, experiments have relied so far on indirect
manifestations of this order, such as edge states and the
quantization of conductivity.

Ultracold atoms facilitate the implementation of artifi-
cial gauge fields [4]. Here, we distinguish proposals that
generate continuous fields [5], such as the recent experi-
ment by Lin et al. [6], from those that rely on optical
lattices and engineering of hopping [7]. We will concen-
trate on the latter, introducing a method based on standard
time-of-flight (TOF) measurements that can identify a
topological character in the quantum state of the system.
Our starting point is a possible implementation of
Haldane’s model using fermionic atoms in two internal
states. The topological nature of its ground state is wit-
nessed by the Chern number. This number counts the times
the ground state, written as a spinor, wraps around the
sphere, as a function of momentum. We demonstrate that
TOF measurements reconstruct the Chern number in a way
which is robust against the presence of external perturba-
tions or state preparation. Our method can be adapted to
other quantum simulations of topological order in optical
lattices [8–17], as many already use internal degrees of
freedom of the atoms to encode the order.

One common mechanism for the appearance of topo-
logical order is based on the topology of the eigenstate
manifolds. Consider a real-space lattice whose unit cell has
d quantum degrees of freedom—position of the particle,
spin, etc. Its energy band description, EmðkÞ, has d eigen-
states, c m¼1...dðkÞ, per value of momentum k ¼ ðkx; kyÞ in

the Brillouin zone, B. Different configurations of the vec-
tor fields vm ¼ ihc mðkÞjrkc mðkÞi, defined as the gradient
in momentum space of the wave functions c m, are char-
acterized by topological invariants such as the Chern num-
ber of each band [3],

�m ¼ 1

2�

Z
B
rk � vmd

2k: (1)

In the case of the quantum Hall effect, the energy bands are
separated from each other and the material becomes an
insulator for appropriate Fermi energies, EF. In a real
setup, with finite boundaries, the sample can have a quan-
tized nonzero conductivity given by the topological invari-
ant �m

xy ¼ e2=h
P

Em<EF
�m, which is a signature itself of

topological order [18]. The transport is then supported by
‘‘edge’’ states that are localized on the boundary of the
material, with interesting properties, such as spin polariza-
tion or chirality, insulation from noise, and resilience to
perturbations [3].
There are two essential routes towards topological order

in momentum space, depending on how we realize the d
quantum degrees of freedom mentioned above. One is to
start from charge carriers with intrinsic angular momentum
and a spin-orbit coupling, as in the Kane model [1] or in
semiconductor structures [19]. A different approach is
exemplified by the Haldane model [20], built on a honey-
comb lattice where the unit cell has two sites and a spatially
modulated magnetic field breaks the parity. We shall pro-
pose a generalization of Haldane’s model that relies on
optical lattice technology and two atomic hyperfine levels
(pseudospin) to distinguish between the sites of the unit
cell. This enables us to directly extract the Chern number
from the spin textures in TOF images [21] and demonstrate
the topological order.
Let us consider a honeycomb lattice constructed out of

two triangular sublattices, A and B [Fig. 1(a)]. Each of the
sublattices hosts fermionic alkali atoms in a different in-
ternal state, jai and jbi. The model is parametrized by four
couplings: the hopping amplitudes inside the same species
lattice, ta and tb; the energy difference between A and B
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sublattices, "; and the coupling between sublattices, tjk,

which can be induced by a Raman laser and controlled at
will [22]. If the lattice is deep enough and the tunneling
amplitudes and interaction energies remain small com-
pared to the interband separation, we may use the single-
band tight-binding model [23]

H ¼ X
hai;bji

ðtijbyi aj þ t?ija
y
i bjÞ þ

X
j

"ðayj aj � byj bjÞ

þ X
hhai;ajii

taa
y
i aj þ

X
hhbi;bjii

tbb
y
i bj: (2)

In the presence only of the hopping tij, the energy spectrum

consists of two energy bands that meet at two ‘‘Dirac
points.’’ At half filling, the low-energy physics of the
system is dominated by the linear dispersion around these
points, the ‘‘Dirac cones’’ [24]. Because of the presence of
ta, tb, and ", the effective Dirac fermions acquire a mass
that depends weakly on momentum. The position of the
Dirac points on the mass landscape determines whether the
model is topologically ordered or not [25]. In our cold atom
simulation, this is controlled using the Raman lasers to
attach a phase to the hopping [7]

tjk � t expði�jkÞ; �jk ¼ �p � ðxj þ xkÞ=2: (3)

This phase displaces the energy bands created by the
Raman hopping, t, relative to mass landscape generated
by the other contributions, ta;b and ", as shown in Fig. 1(b).
When the Dirac points have opposite signs of the mass, the
Chern number (1) automatically becomes nonzero.
Intuitively, while the total flux over each hexagonal
plaquette is zero, the bipartite nature of the lattice allows
the phases �jk to have a nontrivial effect: along the path

1 ! 2 ! 3 ! 1, depicted in Fig. 1(a), the local effective
magnetic flux, �12 þ�23, is also different from zero.
The momentum-space Hamiltonian associated to (2) has

the structure given in the introduction [3],

H ðkÞ ¼ �ðkÞ1� EðkÞSðkÞ � �; (4)

with two energy bands �EðkÞ, the Pauli matrices � ¼
ð�x;�y; �zÞ, and a normalized pseudospin
SðkÞ labeling the state of the atoms in the fjai; jbig space.
In our model, SðkÞ / ½tRefðk��pÞ; tImfðk��pÞ;
"þ ðta � tbÞgðkÞ�, with the complex functions fðkÞ ¼P

n¼0;1;2e
�ik�vna and gðkÞ ¼ P

n¼3;4;5 cosðk � vnaÞ, a set

of displacements vi 2 1
2 � fð�2; 0Þ; ð1; ffiffiffi

3
p Þ; ð1;� ffiffiffi

3
p Þ;

ð0; 2 ffiffiffi
3

p Þ; ð3; ffiffiffi
3

p Þ; ð3;� ffiffiffi
3

p Þg, and the honeycomb lattice
spacing a. The energy shift � ¼ ðta þ tbÞg does not affect
the topological phase.
The topological properties of the model can be obtained

from the field SðkÞ. In particular, the lowest energy band
has a total Chern number

� ¼ 1

4�

Z
B
S � ð@kxS� @kySÞd2k: (5)

Fig. 1(b) summarizes the three different phases that can be
accessed by means of the effective magnetic flux, �p ¼
ð0;�pyÞ, and the imbalance between lattices, "=ta. First of

all we find a trivial region, � ¼ 0, which is topologically
equivalent to graphene with a mass term. When we inter-
pret the associated spin texture as a map onto the Bloch
sphere, both cones have the same effective Dirac mass and
point to the same pole, Sz > 0. Since they cover the same
polar cap in opposite senses, � ¼ �ð12 � 1

2Þ ¼ 0. Moving

across the solid black line in Fig. 1(b), the lattice undergoes

FIG. 1 (color online). Haldane-type model. (a) Two triangular optical lattices (A and B) are Raman-coupled by a laser that makes an
atom switch sublattice (A $ B). This allows for both next-nearest-neighbor hoppings, ta;b, and a complex nearest-neighbor hopping,

tjk, whose phase depends on the momentum imparted by the Raman laser, �p. (b) Phase diagram of the zero-energy ground states, as a

function of the energy imbalance between lattices, "=ta, and the momentum imparted by the laser, �p ¼ ð0;�pyÞ. We plot the exact

phase boundary in the thermodynamic limit (solid line), together with a color-graded simulation of the Chern number for a finite lattice
with 2� 17� 17 sites and 20� 20 pixels. The diagrams on the right-hand side show how the Dirac points are displaced on the
distribution of Bloch vectors SzðkÞ induced by the Hamiltonian [left (blue) positive, right (red) negative].
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a quantum phase transition into a topologically nontrivial
phase. Now, the cones on inequivalent Dirac points are
positioned at opposite poles of the Bloch sphere, forming a
Skyrmion [18] [Fig. 2(a)] that covers the whole sphere and
thus � ¼ �ð12 þ 1

2Þ ¼ �1.

The setup in Fig. 1(a) may be experimentally realized
along the lines of Ref. [26], combining spin-dependent
potentials [27,28], with recent techniques for creating di-
pole traps using microscope objectives [29]. We suggest
projecting two triangular lattice patterns onto a two-
dimensional sheet of light that traps the fermionic atoms.
An electro-optic phase modulator controls the relative
displacement of the lattices [30] and the appropriate

weights of left and right circularly polarized light
[27,28]. The result is two hyperfine ground states of the
same fermionic species confined on the two triangular
sublattices of the honeycomb pattern. Thanks to this con-
figuration, the distribution SðkÞ / h�i can be experimen-
tally determined from the TOF images that appear when
the atoms are released from the optical trap. A typical
experiment would begin with a Mott state in which only
the A sublattice is filled and adiabatically progress to larger
values of ta, t, and ". Once the approximate ground state is
prepared, switching off the trap in adequate time scales
[21] projects the atom cloud into the momentum density
distributions, na;bðkÞ, giving direct access to one

of the pseudospin components SzðkÞ ¼ 1
2 ½naðkÞ �

nbðkÞ�=½naðkÞ þ nbðkÞ�. A fast Raman pulse during TOF
allows us to rotate the atomic states and map Sx and Sy to

Sz, reconstructing the whole vector field. Actual experi-
ments ‘‘pixelize’’ the time-of-flight images, counting the
number of atoms on each ‘‘square’’ of the effective
Brillouin zone and estimating the averages of Sx, Sy, or

Sz. Either through repetitions or through self-averaging in
an experiment with multiple copies of the lattice, we will
obtain a set of normalized vectors fSmgL�L

m¼1, evenly
sampled over momentum space. As shown in Fig. 2(b),
we suggest identifying the pixels with the nodes of a
triangular lattice, T ¼ fSjT ;SkT ;SlT g, approximating the

integral � by its discretization

�D :¼ 1

8�

X
T

SjT � SkT � SlT ¼ �þOð4�2=L2Þ: (6)

The value �D has the properties of a topological quantity—
stability and robustness against local perturbations—and is
also stable with respect to the discretization [31].
We have compared the thermodynamic limit distribution

SðkÞ with realistic finite-size lattices with imperfections.
For this, we have exactly diagonalized Eq. (2) on a finite
lattice with up to 20 000 sites, including the additional

FIG. 2 (color online). (a) Spin texture of the Haldane model,
interpreted as a mapping from momentum space, ðkx; kyÞ, onto
the Bloch sphere, S ¼ h�i / ðcos� sin�; sin� sin�; cos�Þ. The
colors and arrows show the polar angle, �ðkÞ, and the azimuthal
component of the spin, ðSx; SyÞ, for a topological phase � ¼ þ1.

(b) Interference pictures for this phase which result in momen-
tum density distributions for the a (up) and b (down) particles. A
square lattice of 20� 20 pixels partitioned into triangles is used
to compute the estimate �D ¼ 0:9 [Eq. (6)]. The enclosed area
corresponds to (a).

FIG. 3 (color online). (a) Density of states and (b) Chern number simulation at "=ta ¼ �0:5 for a lattice with r ¼ 0 (solid line), 10�3

(dashed line), and 0.02 (dotted line). (c) Chern number for "=ta ¼ �0:5 and py ¼ 3�=4a [uppermost horizontal solid (blue) line] or

2�=a [lowermost horizontal solid (black) line] vs confining potential strength, r, starting with 1=2 (solid) or 1=4 particles per site
(dashed) on a lattice with 50� 50 sites. The values obtained using 50� 50 pixels are compared with those from a 20� 20 matrix
[middle horizontal (gray) line]. (d) Density plots for the points marked in (c), showing the wedding cake structure where regions with
n ¼ 1 do not contribute to the Chern number.
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harmonic confinement term, 1
2m!2x2i , which is typical

from cold atom experiments. Our plots report simulations
with t=@ ¼ 1 kHz, ta=t ¼ 0:5, and tb ¼ 0, using r ¼
m!2a2=2t to parametrize the influence of the harmonic
confinement. Realistic values for a lattice with a� 400 nm
range from r ¼ 10�3 (6Li in a trap with!=2� ¼ 60 Hz) to
r ¼ 0:02 (40K in a trap with !=2� ¼ 100 Hz), but we
probed up to r ¼ 0:25. The results are very insensitive to
the number of atoms, as already for 17� 17 sites the
interference pattern provides the right phase diagram
[Fig. 1(b)]. The Chern number is also very robust with
respect to the discretization: a 20� 20 pixelization devi-
ates from the theoretical value of � only 10% [Fig. 3(b)], in
line with the error Oð4�2=L2Þ expected from a discretiza-
tion with a smooth integrand. Moreover, �D still captures
the discontinuity across the topological phase transition
[Fig. 1(b)]. Contrary to the global density of states and
the eigenenergies, the approximate Chern number �D is
also robust against inhomogeneities. Already, for a confin-
ing trap with r ¼ 0:02, the Dirac cones are no longer
evident [Fig. 3(a)] but the Chern number is still close to
�1with a good signal-to-noise ratio [Fig. 3(c)]. This is due
to the wedding cake structure introduced by the harmonic
trap [32]: for sufficiently strong traps, there is always one
ring or disc hosting ntop atoms in a topological phase

[Figs. 3(c) and 3(d)]. Only these atoms contribute to the
total Chern number, much like only superfluid atoms add to
the interference peaks in experiments with bosons in opti-
cal lattices [33]. Note also how, as shown in Fig. 3(d), for
low densities, there are not enough atoms to form a topo-
logical phase and the Chern number deviates from �1.
However, raising the trap brings the chemical potential up
to a level in which the first disc with particles in a topo-
logical phase is created, and �D converges to �1. Finally,
we expect also a good behavior in finite-temperature simu-
lations because the effect of temperature only changes
the length of vector h�i (i.e., the signal) but not its
orientation S.

Summing up, we have presented a robust and very
general method to detect topological order in momentum
space using ultracold atoms in various internal states and
TOF images. As a very relevant application, we have
introduced an experimental proposal to generalize the
Haldane model [20]. We found that the topological phases
and our method are both robust under (i) use of small finite
lattices, (ii) coarse grain measurements of the spin texture,
(iii) inhomogeneous potentials superimposed on top of the
lattice, and (iv) errors in the exact values of the chemical
potential, number of atoms, or finite temperature. We
believe our proposal is thus advantageous with respect to
other indirect detection schemes—edge transport, eigen-
state preparation [11], or local estimates of the density of
states [32]—which may be more sensitive to temperature
and imperfections. Compared also to the numerical proto-
col in Ref. [34], our method only requires a single set of

measurements instead of reconstructing spatially depen-
dent correlators in position space, which are not easily
accessible in optical lattices. Finally, the implementation
of our ideas would represent the first direct visualization of
nonlocal topological order.
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