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Linear response spectra of a driven intrinsic localized mode in a micromechanical array are measured as

it approaches two fundamentally different kinds of bifurcation points. A linear phase mode associated

with this autoresonant state softens in frequency and its amplitude grows as the upper frequency

bifurcation point is approached, similar to the soft-mode kinetic transition for a single driven Duffing

resonator. A lower frequency bifurcation point occurs when the four-wave-mixing partner of this

same phase mode intercepts the top of the extended wave branch, initiating a second kinetic transition

process.
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A general property of a driven nonlinear oscillator is that
given sufficient starting amplitude it will stay in resonance
as the frequency is changed adiabatically. In this autoreso-
nant (AR) state, where feedback is not required, the oscil-
lator phase is locked to the driver. A variety of applications
have been described in Refs. [1,2]. Recent theoretical work
has focused on controlling solitons [3] and excitations in
discrete and continuous nonlinear Schrödinger equations
[4] while experimental studies have occurred for micro-
mechanical arrays [5], optical guided waves [6], and super-
conducting Josephson resonators [7]. It has been predicted
theoretically for a periodically driven single nonlinear
oscillator and examined with analog electrical experiments
near the location of its bifurcation region that critical
phenomena arise in the density of fluctuations [8,9], and
the bifurcation transition is characterized by slow dynam-
ics [10,11] associated with a soft mode [12], which goes to
zero frequency at the transition.

Micro-electrical-mechanical and nano-electrical-

mechanical systems provide a platformwith which to study

the intrinsic dynamical localization of vibrations in driven

nonlinear lattices. Both experimental [5,13] and theoretical

[5,14–18] studies have appeared that showcase the prop-

erties of such intrinsic localized modes (ILMs), the funda-

mental strongly localized excitation that appears when

both lattice discreteness and nonlinearity are important

[19–22]. A feature overlooked until recently is the bifur-

cation properties of this AR state and the concomitant

backreaction of the driven ILM on the dynamics of the

lattice. For a 1D monatomic lattice with hard quartic

anharmonicity it has been predicted that linear local modes

(LLMs) would appear near an ILM and that four-wave

mixing between the ILM and the LLM would give rise to

additional spectral features [23]. Missing are any experi-

ments or discussion of the existence of a linear ILM

soft-phase mode or the influence of LLMs as the driven
ILM approaches a bifurcation frequency.
In this work the first experimental observations of the

dynamical properties of two separate bifurcation transi-
tions from the AR ILM state of a driven 1D micromechan-
ical array are presented and analyzed. Linear response
measurements are used to probe the small signal dynamics
of AR state. Our measurements and associated simulations
show that the high frequency bifurcation transition is very
similar to that found for a single driven Duffing-like oscil-
lator in that the associated linear soft-phase mode goes to
zero frequency at this transition [24]. The low frequency
transition, on the other hand, is characterized by a non-
linear interaction between the same soft mode and the
highest frequency plane wave mode of the lattice.
Figure 1 shows the experimental setup both for the AR

amplitude measurement and for the associated linear re-
sponse measurement. The driven micromechanical array
contains 152 Si3N4 cantilevers coupled together by a com-
mon overhang. A cw pump feeds energy to the array
maintaining the ILM in the large amplitude AR state.
For linear response measurements an additional weak
probe driver is used to perturb the array. The output of
the probe is combined with the strong pump and connected
to the piezoelectric transducer (PZT) so the perturbation is
applied uniformly across the lattice. First, the driver fre-
quency is chirped up to generate the ILM at an arbitrary
lattice site. Its position is monitored by a combination of a
line focused laser beam and a 1D CCD camera (not
shown). The probe laser beam is then adjusted to the
next short cantilever of the ILM to operate in the small
signal regime. The motion of this cantilever is monitored
using a position-sensitive detector (PSD) with a large de-
flection range. A lock-in amplifier is used to selectively
analyze the cantilever motion that is caused by the probe
oscillating at a given frequency. The response spectrum is
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measured by scanning the probe frequency, while the pump
frequency is held fixed. By changing the pump frequency
in a stepwise fashion, the linear mode properties can be
monitored as a kinetic transition is approached. Once the
driver frequency passes one of the bifurcation points, it
takes many tries until an ILM is generated at the same
lattice site for additional measurements with different
pump frequencies. This uniform drive method should
only couple to odd symmetry modes; however, heating
from the probe laser produces an asymmetric perturbation
near the ILM so that an even LLM of the type shown in
Fig. 1(c) can also be observed.

Both a high frequency and a low frequency bifurcation
transition out of the AR ILM state are experimentally
identified in Fig. 2(a) where the observed amplitude is
shown as a function of the pump frequency. Because of
the irreversible nature of the AR state beyond the transition
points, a measurement sequence is initiated from its middle
frequency region and the pump frequency is then step
incremented slowly up or down. The top abscissa in
Fig. 2(a) is the driving frequency normalized to the top of
the linear optic mode frequency. The lower abscissa is the
difference frequency between the driver and the linear optic
mode frequency normalized by the optical bandwidth.
(This ratio provides a general measure of the strength of
the nonlinearity for this driven system.) Note that to reach
the high amplitude AR state the pump frequency must
increase at a sufficient rate to cross over the low amplitude
state between the unlocked state and the AR state [25].

These experimental results are compared to simulations
incorporating previously applied lumped element lattice
model equations

mi €xi þmi _xi=�þ k2Oixi þ
X

j

kðjÞ2I ð2xi � xiþj � xi�jÞ

þ k4Ox
3
i þ k4Ifðxi � xiþ1Þ3 þ ðxi � xi�1Þ3g

¼ mi�pump cos�tþmi�probe cos!t;

with an obvious notation. Specific array parameters are
described in Ref. [26] and in the Supplemental Material
[27]. The top curve in Fig. 2(b) is for a driver with ampli-
tude similar to the experimental level. Once the AR ILM
state is generated, its amplitude changes smoothly with a
slow variation in the driver frequency. Both AR transitions
are evident although the lower frequency one is not as
marked as observed experimentally in Fig. 2(a). The next
lower trace in Fig. 2(b) shows the result of a relatively rapid
increase in the driver frequency necessary to produce the
AR state. The bottom two traces illustrate the small am-
plitudes that appear for slow up and down frequency scan-
ning where no AR state is produced.
The experimentally measured linear response spectra

for the AR ILM state at different pump frequencies are
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FIG. 2. (a) Experimentally observed AR ILM amplitude as a
function of the pump frequency, showing two transitions. Upper
abscissa: Pump frequency normalized to the top of the optic
branch. Lower abscissa: Difference frequency between the pump
and the top of the optic branch (fT ¼ 140:0 kHz) normalized by
the bandwidth (3.1 kHz). The stable AR region is 140.46–
144.85 kHz, or 0.148–1.57 by the normalized difference fre-
quency. (b) Simulated nonlinear response of the AR state in the
hard nonlinear lattice with driver appropriate to the experimental
level. Top trace: AR region, identifying its two transitions.
Middle trace: F denotes fast frequency rate required to reach
the AR state. Bottom two traces: S denotes slow up and down
scanning; no AR state occurs. The stable frequency region is
137.56–146.54 kHz, or 0.102–2.29 by the normalized difference
frequency. The top of the band frequency is 137.14 kHz and the
bandwidth is 4.1 kHz. Curves are shifted up or down for clarity.
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FIG. 1. (a) Experimental setup for the linear response mea-
surement of the autoresonant (AR) ILM state with a uniform
probe perturbation. The array is composed of alternating 50 and
55 �m length by 300 nm thick cantilevers. The pump driver and
probe signals are added and used to excite the array uniformly
with a PZT. The ILM position is monitored by a combination of
a line focused laser beam and a 1D CCD camera (not shown). A
laser diode (LD) illuminates a short cantilever to the side of the
ILM and the reflected beam is detected by a position-sensitive
detector (PSD). The displacement signal is analyzed with a lock-
in amplifier. A typical pump amplitude is 14 V, while the probe
amplitude is 12 mV. (b) Spatial pattern of the odd symmetry
ILM. (c) Pattern of an even linear local mode (LLM). The
asymmetric LD heating of the localized vibration region permits
the even LLM to be excited even though the PZT drives the array
uniformly.
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presented in Fig. 3. As will be demonstrated via simula-
tions below, the two strong sidebands shown here are due
to the soft-phase mode within the AR state. (For clarity the
actual pumped ILM amplitude is deleted in this figure.)
The probe spectra are displayed with the pump varying
from 140.5 to 144.8 kHz in 100 Hz intervals from bottom to
top. (This range corresponds to 0.161–1.55 in terms of the
difference frequency normalized by the bandwidth.)
The higher frequency sideband is the soft-phase mode
while the lower frequency one is its four-wave-mixing
partner. The two pump frequency limits shown are close
to the upper and lower bifurcation frequencies, and so the
frequency range essentially corresponds to the entire stable
region of the AR state shown in Fig. 2(a). Note the char-
acteristic soft-mode behavior as the pump frequency ap-
proaches the upper bifurcation point. The upper bifurcation
transition takes place when the soft-phase-mode frequency
goes to zero. Similar soft-phase-mode behavior is found
for a single driven Duffing oscillator [24]. Most of the
weak satellite features that appear near the low frequency
bifurcation transition are extended wave optic modes and
their partners, but the highest frequency one is a LLM.

From numerical simulations the corresponding linear
response spectra for the same uniform perturbation applied
to the AR ILM state can be obtained. The displacement
produced by the perturbation is recorded in a manner
similar to that of experiment; i.e., the displacement is
multiplied by cos!t or sin!t and averaged over time to
obtain cosine and sine components of the response func-
tion. The resulting amplitude spectra calculated from these

cosine and sine spectra are shown in Fig. 4. The entire
stable pump frequency region (0.112–2.26) for the AR ILM
state is shown. As the upper bifurcation point is ap-
proached, the phase mode frequency softens and its re-
sponse diverges. The associated LLM (off the horizontal
scale) has no such dramatic behavior. As the lower bifur-
cation point is approached the four-wave-mixing partner of
the soft-phase mode approaches the top of this extended
wave branch. The optic branch modes and their four-wave-
mixing partners appear as weak low frequency satellite
features in the figure. The lower transition occurs when
these two intersect, presenting a completely different dy-
namical signature from that of the upper transition. The
detailed properties of the modes in Fig. 4 are identified by
checking their shapes numerically. We find that the odd
symmetry of the soft-phase mode is the same as that of the
driven ILM. The other small peaks in Fig. 4 are odd
symmetry band modes.
The dynamics behind the lower bifurcation transition is

quite different from the upper one. The experimentally
measured response for these different excitations is shown
in Fig. 5. The sine component of the probe response spectra
is displayed as the lower bifurcation transition is ap-
proached. The large positive and negative peaks are sig-
natures of the soft-phase mode and its partner. The top of
the plane wave vibrational band is evident because it is
followed by many smaller positive and negative peaks at
still larger frequency shifts. The even symmetry LLM
mode is activated by heating from the focused laser probe
beam to one side of the ILM and gives an AM modulation
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FIG. 3. Experimental response spectra for the AR ILM state
produced by a uniform driver. The two strong sidebands identify
the soft-phase mode associated with this state. Spectra are
aligned from (0.161–1.55 by the normalized difference fre-
quency). The upper and lower frequency limits are near the
two bifurcation frequencies. The gap frequency of these side-
bands decreases and the response grows as the pump frequency
approaches the upper bifurcation point. The additional very
weak sidebands approaching the lower bifurcation transition
are the even LLM and its partner and lower frequency band
modes, as described in the text. Both frequency axes are nor-
malized by the optical bandwidth.
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FIG. 4. Simulated linear response spectra of the AR state
produced by a uniform driver. The entire stable frequency region
of the pump frequency is shown, i.e., 0.112–2.26 by the normal-
ized difference frequency. At the upper bifurcation point, the
phase mode gap frequency softens and response diverges. At the
lower bifurcation point, the phase mode overlaps with the top
band mode, shown as small peaks near the bottom of the figure.
This AR transition occurs when the soft-phase mode intersects
these linear modes via four-wave mixing. The band mode
maxima near the lower bifurcation region are magnified
20 times.
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component. Our experiments show that as the lower bifur-
cation transition is approached this LLM mode crosses
over the partner of the soft-phase mode, as shown in
Fig. 5, with no effect. Only when this soft-mode partner
coalesces with the top of the odd symmetry band mode
spectrum does the transition occur.

Our experimental measurements of the linear response
spectrum of the AR ILM state in a lattice show that a soft-
phase mode and its four-wave-mixing partner play a key
role in the bifurcation transitions. The soft-mode frequency
collapses to zero and its amplitude diverges at the upper
bifurcation point, signifying a kinetic phase transition very
similar to that observed for a single driven Duffing oscil-
lator. The LLMs attached to the AR state show no such
characteristic frequency behavior. With decreasing fre-
quency and amplitude of this AR ILM state, some LLMs
transform to delocalized optic modes while one does not
before the new, lower frequency, bifurcation transition
occurs. As this transition is approached it is the resonant
four-wave mixing of the soft-phase mode with the delocal-
ized optic mode, of the same symmetry, that destroys the
localized AR ILM state by modulating its shape with a
breathing oscillation of increasing amplitude. Although
these experiments are specific to a micromechanical array,

these results are expected to be quite general with the
multiple bifurcation nonlinear dynamics applicable to
other kinds of physical lattices.
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FIG. 5. Sine component of the experimental probe response
near by the lower bifurcation frequency. Spectra are ordered by
the pump frequency from 0.355 to 0.161 in 0.016 step. The large
peak at the center is the pump signal. The lower bifurcation takes
place at 0.148. The large positive amplitude identifies the soft-
phase-mode oscillation of the ILM, the corresponding negative
peak is its four-wave-mixing partner. The even LLM, activated
by asymmetric heating of the ILM, appears as an amplitude
modulation response. As the driver frequency is decreased, the
highest frequency band mode of the array, identified with an
arrow, approaches the partner of the soft-phase mode. (Lower
frequency band modes appear as a sequence of positive and
negative peaks.) Near the transition the even LLM frequency
crosses the soft-phase-mode partner, dashed curve, second from
the bottom. The transition takes place when the soft-mode
partner intersects the lower frequency odd symmetry band mode.
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