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Quantum-enhanced metrology infers an unknown quantity with accuracy beyond the standard quantum

limit (SQL). Feedback-based metrological techniques are promising for beating the SQL but devising the

feedback procedures is difficult and inefficient. Here we introduce an efficient self-learning swarm-

intelligence algorithm for devising feedback-based quantum metrological procedures. Our algorithm can

be trained with simulated or real-world trials and accommodates experimental imperfections, losses, and

decoherence.
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Precise metrology underpins modern science and engi-
neering. However, the ‘‘standard quantum limit’’ (SQL)
restricts achievable precision, beyond which measurement
must be treated on a quantum level. Quantum-enhanced
metrology (QEM) aims to beat the SQL by exploiting
entangled or squeezed input states and a sophisticated
detection strategy [1–3]. Feedback-based QEM is most
effective as accumulated measurement data are exploited
to maximize information gain in subsequent measure-
ments, but finding an optimal QEM policy for a given
measurement device is computationally intractable even
for pure input states, unitary evolution U, and projective
measurements. Typically, policies have been devised by
clever guessing [4,5] or brute-force numerical optimization
[5]. Recently, we introduced swarm-intelligence reinforce-
ment learning to devise optimal policies for measuring an
interferometric phase shift [6]. Our algorithm is space
efficient; i.e., the memory requirement is a polynomial
function of the number of times N that U is effected, in
contrast to the exponentially expensive brute-force algo-
rithm. Although our result demonstrated the power of
reinforcement learning, our algorithm requires a run-time
that is exponential in N and a perfect interferometer,
thereby effectively restricting its applicability to proofs
of principle. Here we report a space- and time-efficient
algorithm (based on new heuristics) for devising QEM
policies. Our algorithm works for noisy evolution and
loss, thus making reinforcement learning viable for au-
tonomous design of feedback-based QEM in a real-world
setting. The devised QEM policies belong to the class of
self-protected algorithms [7], as they do not employ quan-
tum error correction to achieve robustness against quantum
noise and errors.

We restrict our focus to single-parameter QEM.
Interferometric phase estimation is the canonical quantum
metrology problem and is applicable to measurements of
time, displacements, and imaging. Therefore, we develop
and benchmark our algorithm for autonomous policy de-
sign in this context. To beat the SQL, we employ an
entangled sequence of N input photons, feedback control,

and direct measurements of the interferometer output. For
adaptive phase estimation, the interferometer processes
one photon at a time. Each input photon can be in two
modes, labeled fj0i; j1ig, corresponding to the interferome-
ter’s two paths. Thus, a time-ordered sequence of N pho-
tons implements an N-qubit state.
We assume that the interferometric transformation

(Fig. 1) can be expressed as a tensor product of quantum
channels (i.e., completely positive trace-nonincreasing
maps [8]) Cð’; �mÞ for ’ the unknown phase shift being
estimated and �m a controllable phase with m ¼
0; 1; . . . ; N � 1. The channel C is a noisy version of the
restrictive single-qubit unitary process U normally consid-
ered in QEM. Our tensor-product description corresponds
to the assumption that the interferometric process, other
than the control, is unchanging during the measurement
procedure. Photons of the N-qubit input state j�Ni enter
the interferometer one-by-one and are transformed by C.
Detectors measure where each photon exits, thereby im-
plementing a projective-valued measure with elements
fj0ih0j; j1ih1jg that yield 1 bit u 2 f0; 1g if the photon is
not lost. The processing unit (PU) modifies the interfero-
metric phase shift by �m, according to the measurement
history hm ¼ umum�1 . . .u1 2 f0; 1gm up to the mth pho-
ton, prior to the next photon being processed. After all N
input qubits have passed through the interferometer, the PU
estimates the interferometric phase shift’ as ~’. A policy %
is a ‘‘behavior pattern’’ for the PU, i.e., a collection of rules

FIG. 1 (color online). Adaptive-feedback scheme for estimat-
ing an interferometric phase ’. The input state j�Ni is fed into
the unital quantum channel C one qubit at a time and the output
qubit is measured or lost. The processing unit (PU) shifts the
interferometric phase by � after each successful measurement
prior to processing the next qubit.
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that tell the PU how to set �m given hm and which phase
estimate to report at the end.

The error probability distribution Pð&j%Þ of the policy %
yields the standard error �’ð%Þ of the estimate ~’ for & :¼
’� ~’. As & is cyclic over 2�, �’ð%Þ is given by the
Holevo variance VHð%Þ ¼ �’ð%Þ2 :¼ Sð%Þ�2 � 1, for
Sð%Þ :¼ jR�

�� Pð&j%Þei&d&j the sharpness of Pð&j%Þ [9].
Evaluating Sð%Þ requires exponential computing time
with respect to N and thus is computationally intractable.
However, from K trial runs of % with randomly chosen

phases ’1; . . . ; ’K, we can infer a sharpness estimate ~S :¼
jPK

k¼1 expði&kÞj=K for &k the error of the kth phase esti-

mate. For QEM, �’ð%Þ should scale better than the SQL

�’ / 1=
ffiffiffiffi
N
p

and as close as possible to the ultimate
Heisenberg limit �’ / 1=N [1–3].

For unitary evolution, the interferometer transforms
each input qubit by Unð�Þ ¼ expf�i��̂ � ng for �̂ :¼
ð�̂x; �̂y; �̂zÞ the Pauli matrices, n a unit vector, and ’�
� ¼ 2� the interferometric phase difference. Without loss
of generality, we can restrict our analysis to n ¼ ð0; 1; 0Þ.
However, because of imperfections, a real-world interfer-
ometer is represented by a nonunitary quantum channel C.
We assume an unbiased interferometer; i.e., a random input
qubit 1 ¼ j0ih0j þ j1ih1j is mapped to itself (Cð1Þ ¼ 1),
corresponding to a unital channel. Hence, for continuous or
discrete and countable n and � [10],

C ð�Þ ¼
ZX

n;�
wnð�ÞUnð�Þ �Uynð�Þ; wnð�Þ 2 R; (1)

with
RP

n;�wnð�Þ ¼ 1 and wnð�Þ ¼ ��;’���n;ð0;1;0Þ for an
ideal interferometer. In contrast,

RP
n;�wnð�Þ ¼ 1� � cor-

responds to an input state-independent loss rate �, and
quantum noise is incorporated by wnð�Þ being a general
distribution with h�i ¼ ð’��Þ=2 and hni ¼ ð0; 1; 0Þ.
We simulate noise using normal distributions with the
aforementioned means and small standard deviations ��,

�n � 1, corresponding to visibility 1=ð2e2�2
� � 1Þ. For an

optical interferometer, � noise corresponds to path-length
difference fluctuations and n to beam splitter reflectivity
fluctuations. We utilize the input state

j�Ni ¼
XN

n;k¼0

sinðkþ1Nþ2�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N=2

p eði=2Þ�ðk�nÞdN=2
n�ðN=2Þ;k�ðN=2Þ

�
�

2

�
jni½N�

from [4–6], with dj�;�ð�ÞWigner’s dmatrix [11]. jni½N� is a
permutationally symmetric state with n qubits in j1i and
N � n in j0i [12]. The state j�Ni is appealing because it
allows precision close to the Heisenberg limit [4,5] and is
robust against loss [6]. The creation of j�Ni is currently an
open question, but our algorithm works for any other state
as well.

The control flow graph of any deterministic policy
for a lossless conditions and a fixed N-qubit input state
can be represented as a binary decision tree of depth N
with an example shown in Fig. 2(a). Each of the

P
N
‘¼0 2

‘ ¼ 2Nþ1 � 1 nodes of the tree corresponds to one

specific state of the experiment and represents the resultant
action of the policy. Numeric optimization is computation-
ally intractable due to the exponentially large number of
nodes. Therefore, we restrict our search to policies that
implement a ‘‘generalized logarithmic search’’ (GLS) heu-
ristic as described below, because the set of all GLS
policies can be parametrized by only N parameters and
contains phase-estimation policies with optimal precision
scaling [6] with respect to N.
For a uniform prior of ’ 2 ½0; 2�Þ, the GLS heuristic

commences with the initial feedback �0 ¼ 0. After the
mth measurement result um 2 f0; 1g, the feedback phase is

�m ¼ �m�1 � ð�1Þum�m: (2)

If the qubit is lost,� remains unchanged. After all N input
qubits are processed, there are M � N measurement re-
sults uM; . . . ; u1, and the GLS heuristic reports the phase
estimate ~’ ¼ �M�1 � ð�1ÞuM�M. According to this pa-
rametrization, every GLS policy for an N-qubit input state
is represented by a vector % ¼ ð�1; . . . ;�NÞ in the policy
space PN ¼ ½��;�ÞN , and any such vector % 2 PN is a
valid policy. As any policy % 2 PN utilizes a string
of N input qubits, we refer to it as an N-qubit policy.
Every % 2 PN implements a GLS because % has variable
entries compared to logarithmic search (LS) for
which �m ¼ 1

2 �m�1 [13]. The N-qubit LS policy

ð�=2; �=4; . . . ; �=2NÞ 2 PN but does not surpass the

FIG. 2 (color online). (a) Decision tree representation of a
GLS policy for N ¼ 2 (solid) and N ¼ 3 (entire tree). For
each path in the tree, the inner nodes represent the applied
feedback phases �m and the leaf shows the final phase estimate
~’. At depth m, a measurement umþ1 ¼ 0 directs the path to the
left and umþ1 ¼ 1 to the right. (b) Embedding the best policy
%0N 2 PN in the policy space PNþ1, shown for N ¼ 2. From the

best two-qubit policy %02, the policy %03 2 P 3 is generated as a

guideline. The initial candidate policies for three input qubits are
chosen according to probability density (4), indicated by the
shaded area around %03. [For clarity, the N ¼ 2 case is depicted,

although only candidate policies for N > 10 are chosen accord-
ing to (4).]
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SQL. The duality between GLS policies and points in
PN � RN allows the use of function optimization tech-
niques to search for an optimal %opt 2 PN with minimum

�’, i.e., %opt 2 argmin%2PN
Vð%Þ ¼ argmax%2PN

Sð%Þ.
Unfortunately, this optimization problem is nonconvex
and hence difficult [6].

Particle swarm optimization (PSO) algorithms [14,15]
are outstandingly successful for nonconvex optimization.
PSO is a ‘‘collective intelligence’’ strategy from the field of
machine learning that learns via trial-and-error and per-
forms as well as or better than simulated annealing and
genetic algorithms [16–18]. We have shown that PSO also
delivers an autonomous approach to devising adaptive
phase-estimation policies for ideal interferometry [6,19].

To search for %opt, the PSO algorithm models a

‘‘swarm’’ of � ‘‘particles’’ fpð1Þ; pð2Þ; . . . ; pð�Þg that move

in the search space PN . A particle’s position %ðiÞ 2 PN

represents a candidate policy for estimating ’, which is

initially chosen at random. Furthermore, pðiÞ remembers

the best position, %̂ðiÞ, it has visited so far (including its

current position). In addition, pðiÞ communicates with other

particles in its neighborhood N ðiÞ � f1; 2; . . . ;�g. We

adopt the common approach to set each N ðiÞ in a prede-
fined way regardless of the particles’ positions by arrang-

ing them in a ring topology: for pðiÞ, all particles with

maximum distance r on the ring are in N ðiÞ. In iteration
t, the PSO algorithm updates the position of all particles in

a round-based manner as follows. (i) Each particle pðiÞ

samples ~Sð%ðiÞÞ of its current position with K trial runs.

(ii) pðiÞ resamples ~Sð%̂ðiÞÞ of its personal-best policy %̂ðiÞ,
and the performance of %̂ðiÞ is taken to be the arithmetic

mean �Sð%̂ðiÞÞ of all sharpness evaluations. (iii) Each pðiÞ

updates %̂ðiÞ if ~Sð%ðiÞÞ> �Sð%̂ðiÞÞ, and (iv) communicates

%̂ðiÞ and �Sð%̂ðiÞÞ to all members of N ðiÞ. (v) Each particle

pðiÞ determines the sharpest policy �ðiÞ ¼ maxj2N ðiÞ %̂ðjÞ

found so far by any one particle in N ðiÞ (including itself)
and (vi) moves to

% ðiÞ  %ðiÞ þ!�ðiÞ;

�ðiÞ  �ðiÞ þ �1	1ð%̂ðiÞ � %ðiÞÞ þ �2	2ð�ðiÞ � %ðiÞÞ:
(3)

The arrows indicate that the right value is assigned to the
left variable. The damping factor ! assists convergence,
and 	1, 	2 are uniformly-distributed random numbers from
the interval [0,1] that are regenerated each time Eq. (3) is
evaluated. The ‘‘exploitation weight’’ �1 parametrizes the

attraction of a particle to its personal-best position %̂ðiÞ, and
the ‘‘exploration weight’’ �2 describes attraction to the

best position �ðiÞ in the neighborhood. To improve con-

vergence, we bound each component of !�ðiÞ by a maxi-
mum value of �max. The user-specified parameters !, �1,
�2, and �max determine the swarm’s behavior. Tests indi-
cate that ! ¼ 0:8, �1 ¼ 0:5, �2 ¼ 1, and �max ¼ 0:2 re-
sult in the highest probability to find an optimal policy.

TheK trial runs for assessing sharpness can be simulated
or performed with a real-world experiment. For finite K,
the sampled sharpness has statistical errors that can prevent
the PSO algorithm from learning optimal solutions [20].
We reduce sharpness errors by averaging over multiple
samples in step (ii) [21]. However, for N > 12, the PSO
algorithm fails to learn good policies from scratch due to
sharpness errors [19]. Therefore, we maintain our earlier
strategy of running the learning algorithm for each N
independently when N � 10. For N > 10, our new heu-
ristic bootstraps a starting point for the optimization of an
N-qubit policy from the best (N � 1)-qubit policy %0 ¼
ð�01; . . . ;�0N�1Þ. Our heuristic exploits the fact that an

(N � 1)-qubit policy can be used as an N-qubit policy by
ignoring the Nth measurement result. For N 	 10, the
optimal (N � 1)-qubit policy estimates phases with only
10% less accuracy compared to an optimal N-qubit policy
when used with the N-qubit input j�Ni (Fig. 1 in the
supplemental material [22]). Furthermore, the performance
difference between the optimal N-qubit policy and the
(N � 1)-qubit policy decreases with increasing N because
the relative change in qubit number decreases with increas-
ingN. Therefore, a good (N � 1)-qubit policy is a valuable
starting point for optimizing an N-qubit policy. Exploiting
this discovery is the key for devising the first algorithm that
learns optimal policies efficiently; i.e., the required number
of computational steps and qubits for learning an optimal
policy are polynomial functions of N. In contrast, all other
known methods for finding optimal phase-estimation pol-
icies are computationally intractable.
When devising N-qubit policies for N > 10, our new

PSO algorithm applies the knowledge about previously
learned policies during its initialization step. The initial
policy % 2 PN is selected as the particle’s starting position
with probability

Pð%NÞ ¼
�YN�1
k¼1

N �0
k
;�1
ð�kÞ

�
N �0N;�2

ð�NÞ; (4)

N �;�ðxÞ :¼
�

�1�;� exp

�
� ðx��Þ2

2�2

�
; x 2 ½0; �Þ

0; x =2 ½0; �Þ;
(5)


�1�;� ¼
ffiffiffiffiffiffiffiffiffi
�=2

p
�

�
erf

�
���ffiffiffi

2
p

�

�
þ erf

�
�ffiffiffi
2
p

�

��
; (6)

with N �;�ðxÞ a truncated normal distribution. See

Fig. 2(b) for an illustration of this strategy. The standard
deviation�1 determines the similarity of the firstN actions
of the newly generated policies compared to the template
policy %0. �2 determines the extent to which the action for
the newNth qubit agrees with the previous action of %0. We
found that �1 ¼ 0:01� and �2 ¼ 0:25� yields a high
success rate for our PSO heuristic.
For 4 � N � 14 and perfect interferometry, we verified

that our new PSO algorithm with swarm size � ¼ 20N
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learns optimal N-qubit policies regardless of whether each
policy’s sharpness is evaluated exactly (requires time
/ 2N) or sampled from K ¼ 10N2 trial runs (requires
polynomial run-time in N when simulated). Therefore,
we sample the sharpness of each particle’s current position
and personal-best position in each PSO iteration. As we run
the PSO algorithm for a constant 300 iterations, the entire
optimization process requires OðK�Þ trials. However, to
obtain an N-qubit policy, we have to optimize policies for
10; 11; . . . ; N � 1 input qubits beforehand, as our algo-
rithm requires an (N � 1) qubit policy for devising an
N-qubit policy for any N > 10. Therefore, learning an
N-qubit policy requires OðNK�Þ ¼ OðN4Þ trial runs.
When the trials are simulated, the computational complex-
ity of our PSO heuristic is OðN6Þ (hence efficient) as a
single trial run can be simulated in time OðN2Þ [12]. Once
learned, the execution of an N-qubit policy requires N
entangled input qubits.

We trained our PSO algorithm with simulated trial runs
for various noise and loss rates. In each case, our PSO
algorithm tries to find the sharpest policy %N for given N.
As the algorithm uses stochastic optimization, it is not
guaranteed to learn the optimal policy every time and
must be run several times independently for each N.
Nevertheless, within the limits of available computational
resources, the PSO algorithm succeeded in at least 25% of
the runs, independently of N. We compared the policies
generated by our new machine-learning algorithm to our
previous numerically optimized policies [6], the Berry-
Wiseman (BW) policy [4], and policies obtained by
brute-force numerical optimization [5].

We first discuss policies for a noiseless, lossless setup,
i.e., for unitary evolution. Figure 3(a) shows that our new
method, tested to the limits of available computational

resources, outperforms the BW-policy. We estimate the
performance difference by calculating the scaling � of
the Holevo variance VH. Our policies yield VH / N��
with�PSO ¼ 1:494
 0:003, compared to the inferred scal-
ing �BW ¼ 1:415
 0:003 for N � 50. Furthermore, our
new efficient method greatly surpasses our previous opti-
mization scheme [6] by more than tripling the domain ofN
for developing policies while maintaining the same preci-
sion. The inefficient brute-force optimization was carried
out in the full policy space, i.e., without restriction to GLS
policies. However, the resulting globally optimal policies
perform better only by a constant factor of 0:88
 0:01
compared to our PSO-optimized policies but do not yield
better scaling �. As expected the PSO algorithm yields
policies approaching the SQL VH / 1=N for separable
input states [Fig. 3(b)] [1–3].
Our new algorithm delivers the first QEM policies opti-

mized for a simulated imperfect interferometer with loss
and Gaussian quantum noisy. When applied to noisy con-
ditions, policies generated by our new algorithm have
significantly improved performances compared to policies
optimized for perfect interferometry. As expected, the
performance difference increases with the noise level
(Fig. 3 in the supplemental material [22]). We verify that
our algorithm successfully devises superior policies also
for non-Gaussian noise by using skew-normal distributions
with skewness � ¼ 0:667 for P� and Pn [23]. We find that
a nonzero third standardized moment with variances kept
as before does not reduce the performance of the policies
learned by our new PSO algorithm (Fig. 3 in the supple-
mental material [22]).
In summary, we have devised an efficient machine-

learning algorithm to construct adaptive-feedback mea-
surement policies autonomously for time-independent,
single-parameter estimation problems. Our one prerequi-
site is a training-phase comparison criterion to evaluate the
success of candidate policies. Within the limits of available
computational resources, our PSO-generated policies out-
perform all known schemes for adaptive single-shot phase
estimation with direct measurement of the channel output.
Our algorithm learns to account for experimental errors
and loss thereby making time-consuming error modeling
and extensive calibration dispensable.
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