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Our present study of the universal physics for three oriented fermionic dipoles in the hyperspherical

adiabatic representation predicts a single long-lived three-dipole state, which exists in only one three-body

symmetry and forms near a two-dipole resonance. Our analysis reveals the spatial configuration of the

universal state and the scaling of its binding energy and lifetime with the strength of the dipolar

interaction. In addition, three-body recombination of fermionic dipoles is found to be important even

at ultracold energies. An additional finding is that an effective long-range repulsion arises between a

dipole and a dipolar dimer that is tunable via dipolar interactions.
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The recent advances in producing ground-state ultracold
dipolar molecules [1] have sparked great interest in the
novel phases that could be experimentally accessible [2].
With the ability to control the dipolar interaction by an
external electric field [3], studies of dipolar molecules
could stimulate the discovery of intriguing phenomena
across a broad range of disciplines, from condensed matter
physics to ultracold chemistry. In particular, the effects of
the long-range anisotropic dipolar interaction on ultracold
physics have already been studied for three bosonic dipoles
[4,5]. A recent development has shown [5] that the Efimov
effect [6] is more favorable for three bosonic dipoles,
although the dipolar interaction has ingredients that could
conceivably have destroyed it.

Stimulated by their ability to mimic a variety of exotic
physical systems from superfluids to neutron stars, quan-
tum degenerate Fermi gases with nondipolar interactions
have been studied extensively in recent years [7]. In con-
trast to bosonic gases, whose lifetimes are mainly deter-
mined by three-body recombination [8], fermionic gases
exhibit extraordinary stability against three-body inelastic
collisions, except when the two-body interaction is tuned
near a p-wave resonance [9,10]. Moreover, three-body
physics for identical fermions is expected to be nonuniver-
sal, i.e., short-range-dependent [9,11]. Consequently,
three-body physics for identical fermions has, to some
extent, been regarded as less exciting and/or difficult to
observe. Nevertheless, the influence of dipolar interactions
on the universal behavior of bosons triggers new interest in
the study of universality for fermionic dipoles, and it is
becoming increasingly important to understand such phys-
ics in order to guide ongoing experiments on ground-state
fermionic dipolar molecules [3].

In this Letter, the behavior of three identical fermionic
dipoles is demonstrated to be universal, thus differing
fundamentally from the nondipolar cases. In particular,
near a dipole-dipole resonance (i.e., where the two-dipole
binding energy E2d ! 0), a single long-lived, universal
three-dipole state is formed. Its size and lifetime both

grow with stronger dipolar interactions. The stability of
the fermionic dipolar gases is assessed through numerical
calculations of the rate coefficient K3 for three-dipole
recombination, DþDþD ! D2 þD, which is the
dominant expected loss mechanism for nonreactive
ground-state dipolar molecules [12]. In fact, we have found
that K3 grows rapidly with the strength of the dipolar
interactions and it is strongly enhanced near a dipole-
dipole resonance. This study also shows evidence for a
long-range, dipolar interaction-dependent repulsion that
suppressesD2 þD relaxation collisions whenD2 is deeply
bound.
Consider the three-dipole Schrödinger equation in hy-

perspherical coordinates (in atomic units):
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where R is the hyperradius, c ¼ R5=2� is the scaled three-

body wave function, and � ¼ m=
ffiffiffi
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is the three-body

reduced mass for identical particles with mass m. The
adiabatic Had is

Had ¼ �2ð�Þ
2�R2

þ 15

8�R2
þ V; (2)

where �2 is the usual grand angular momentum operator
[13] and � are the hyperangles representing positions of
the three particles at fixed hyperradius R. The potential
energy V ¼ vð~r12Þ þ vð~r23Þ þ vð ~r23Þ is a pairwise sum of
two-dipole interactions:

vð~rÞ ¼ V0sech
2ðr=r0Þ þ 2d‘

m

1� 3ðẑ � r̂Þ2
r3

fðrÞ: (3)

The sech2 term is isotropic and short-range and it encap-
sulates the complicated interactions between two polar
molecules. The second term, with a short-range cutoff
fðrÞ, is the interaction between two dipoles aligned in the
ẑ direction. The dipole length is defined in terms of the
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electric dipole moment dm as d‘ ¼ md2m=2. The universal-
ity of our calculations is tested by varying both d‘ and V0.

Equation (1) can be routinely solved, either using the
adiabatic representation [13] or else through slow variable
discretization (SVD) [14]. Our study shows that it is ad-
vantageous to use the adiabatic scheme to treat the asymp-
totic behavior of three dipoles in scattering calculations,
while SVD efficiently handles sharp avoided crossings at
small distances. In both cases, the biggest challenge is to
solve the adiabatic eigenvalue equation

Had�
�;M
� ðR;�Þ ¼ U�ðRÞ��;M

� ðR;�Þ; (4)

where U�ðRÞ is the adiabatic potential for channel �, M is
the space-fixed frame projection of the total angular mo-
mentum J, � is the total parity, and ��;M

� ðR;�Þ is the
corresponding eigenfunction. For interacting oriented di-
poles, the major difficulty in solving Eq. (4) is that the total
orbital angular momentum J is not conserved. The method
of Ref. [5] is implemented to solve Eq. (4). Briefly,��;M

� is
expanded in terms of the Wigner D functions [see Eq. (4)
in Ref. [5]], truncated at Jmax ¼ 13 for the convergence of
the three-body observables to the accuracy shown in this
Letter.

The nature of three-dipole states near dipole-dipole
resonances emerges from study of the adiabatic potentials
for M� ¼ 0þ. Note that the even and the odd J values
decouple in this symmetry. This symmetry with only odd J
is of particular interest because it includes the J� ¼ 1þ,
the least-repulsive partial wave for three noninteracting
identical fermions [15]. One would also expect the binding
of three dipoles is most likely to occur at m2d ¼ 0 dipole-
dipole resonance, where m2d is the projection of two-
dipole angular momentum along the field direction.
However,m2d ¼ 0 is not allowed forM� ¼ 0þ symmetry,

so the three-dipole system is considered instead near the
m2d ¼ 1 resonances. Figure 1 shows the typical behavior
of the adiabatic potentials. Asymptotically, the three-body
continuum potentials behave in the same manner as the
nondipolar interaction case, but, for dipole plus dipolar
dimer channels, each threshold has a family of potential
curves whose centrifugal barriers carry different effective
angular momenta due to the J coupling.
Regardless of the complicated topology of the adiabatic

potentials shown in Fig. 1, near a dipole-dipole resonance,
it is possible to trace a diabatic potential well in the channel
closest to the three-body continuum. It cuts through mul-
tiple sharp avoided crossings with deeply bound channels,
as is visible in the inset of Fig. 1. Remarkably, all these
potentials for different d‘ and different short-range poten-
tials fall on top of each other after a proper scaling, thus
providing a strong evidence of universal behavior. Our
calculations also show that the WKB phase for these
potentials at zero three-body energy approaches 1:1� in
the limit d‘ � r0. This implies that, although there may be
a great number of deeply bound nonuniversal three-dipole
states, there is always only one universal quasibound three-
dipole state near a m2d ¼ 1 resonance. A key implication
of the scaling of the universal potentials is that the hyper-
radius of the repulsive barrier increases with d‘, which
suppresses decay of the three-dipole state and increases its
lifetime as the dipolar interaction is increased. To quantify
the energies of the universal states, we have solved Eq. (1)
by using SVD. The energy E3d and the width � of the three-
body states are revealed by adding complex absorbing
potentials in the lower decaying channels.
The universal trend in the energy E3d shown in Table I

confirms the universality expected from the universal po-
tentials in the strong dipolar regime, but the width �
exhibits less universal behavior, presumably due to the
nonuniversal couplings to deeply bound channels.
Nevertheless, the 1=d2‘ suppression in the width implies

an increased lifetime of the universal three-dipole states as
d‘ increases. Our numerical study also shows that the
universal three-dipole states slowly become unbound or
deeply bound as the system shifts away from a dipole-
dipole resonance. In a broad region near a dipole-dipole
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FIG. 1 (color online). A typical set of adiabatic hyperspherical
potentials U�ðRÞ for three fermionic dipoles with d‘=r0 ¼ 58:2
and E2d ! 0. The inset shows rescaled, diabatized potentials
exhibiting universal behavior for a few values of d‘ at a dipole-
dipole resonance. The horizontal dashed line in the diabatic
potential wells indicates the position of the universal three-
dipole states.

TABLE I. The upper rows: the energies E3d and the widths �
of the universal three-dipole states for different values of d‘. The
bottom row: the angle � between the three-dipole triangle and
field direction, the long and short bond lengths bl and bs, and the
smaller bond angle � from the most probable configuration of
the three-dipole states.

E2d ! 0 d‘ (r0) md2‘E3d md2‘�

39.7 171 42

58.2 135 43

100 139 17

� � 16� bl � 0:26d‘ bs � 0:14d‘ � � 15�
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resonance, the properties of the three-dipole states are
essentially unchanged.

Importantly, the interactions of the aligned dipoles break
the overall rotational symmetry, reflecting that the three-
dipole states have a preferential orientation in space. The
geometry of these universal states can be analyzed by
calculating the spatial distribution of the dipoles using
the three-body wave functions. Specifically, the probability
density for finding a dipole at ~r is

�ð~rÞ ¼ 1

3
h�jX

i

�ð ~r� ~riÞj�i; (5)

where �ð ~rÞ is the Dirac delta function and ~ri is the position
vector for the ith dipole. Figure 2 shows the isosurfaces of
�ð~rÞ. The three-dipole states have a strongly preferential
spatial configuration, as indicated by the triangle in the
lower part of the figure. The isosurfaces can be viewed as
the revolution of the triangle along the field axis. It is also
interesting to note that the configuration of the three-dipole
states is universal; only their overall size scales linearly
with d‘.

The configuration of a three-dipole state shown in Fig. 2
can be understood in terms of the anisotropic nature of the
dipolar interactions and the symmetry of the state. The
three dipoles tend to align in a line where the dipolar
interactions in Eq. (3) are the most attractive, but this is
forbidden by the odd partial wave symmetry. The state
therefore has the configuration of an obtuse, isosceles
triangle making a small angle with the field direction.
The lower part of Table I lists the angle between the plane
of the triangle and the field direction, the short and long

bond lengths, and the smaller bond angle determined from
the most probable and also the dominant configuration of
the three-dipole states.
The possibility of universal three-dipole states for other

symmetries has been explored, in particular, the three-
dipole system forM� ¼ 0� symmetry with odd J’s, which
includes the less-repulsive partial wave contribution J� ¼
1� [15]. However, no universal three-dipole states have
been found near both m2d ¼ 0 and m2d ¼ 1 dipole-dipole
resonances. The situation is similar for M� ¼ 1� and 1þ
symmetries, where the adiabatic potentials are found to be
more repulsive. Based on these numerical calculations and
the fact that, for higher M’s and near higher m2d’s reso-
nances, three dipoles have larger centrifugal energy and
therefore the potentials are expected to be more repulsive,
we conclude that the M� ¼ 0þ three-dipole states pre-
sented above are the only class of universal states for
identical fermions.
The universal three-dipole states affect scattering pro-

cesses. As d‘ increases, a resonance in three-dipole recom-
bination is expected whenever a three-dipole state passes
through the three-body breakup threshold before a new
two-dipole state becomes bound. To determine the stability
of nonreactive fermionic dipolar gases, however, it is more
important to know the general scaling of three-dipole
recombination with d‘ and the behavior near a dipole-
dipole resonance. The threshold behavior of the recombi-
nation rate K3 for three fermionic dipoles can be obtained
from a Wigner law analysis [15] of the M� ¼ 0þ, J-odd
low-energy-dominant contribution, giving

K3 ¼ C3

�
k4; (6)

where k ¼ ffiffiffiffiffiffiffiffiffiffi
2�E

p
is the three-body wave number.

For short-range, nondipolar interactions, the coefficient
C3 in recombination rate is expected to scale with the
scattering volume [9,10] and the effective range [10]. For
dipolar interactions, however, the scattering physics is
fundamentally different even in the two-body level [16].
In particular, we have numerically identified a distinct low-
energy expansion of the p-wave phase shift � for two
fermionic dipoles. The real part of � can be expanded as

Re ½�ðk2Þ� � �ak2 � bk22 � Vk32 ðk2 ! 0Þ; (7)

where k2 is the relative two-dipole wave number. This
expansion has a linear term in k2, implying a nonvanishing
scattering length a [16], as expected for r�3 interaction,
and also a quadratic dependence on k2, both of which are
absent for nondipolar interactions. But, similar to the non-
dipolar interaction case, the scattering volume V goes
through a pole across a dipole-dipole resonance.
Our scaling laws for three-dipole recombination are

based on a calculation of the three-dipole scattering matrix
using the eigenchannel R-matrix propagation method [17].

FIG. 2 (color online). The upper part: the isosurfaces of the
one-dipole probability density �ð~rÞ for the universal three-dipole
states, centered in the space-fixed center-of-mass frame. By
normalizing the peak density to be unity, the density of the
following surfaces—the innermost one (red), three middle ones
(green), and the outermost one (light blue)—are 0.8, 0.3, and
0.015, respectively. This crankshaft-resembling structure is a
figure of rotation about the field axis. The lower part: the most
probable orientation and geometry of the triangle formed by
three dipoles. The axes (green) show the direction of the external
electric field.
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First, the SVD solution of Eq. (1) obtains the R-matrix out
to a distance that includes all the sharp avoided crossings.
The R-matrix is then propagated farther in the adiabatic
representation [13] in the asymptotic region until K3 is
fully converged. K3 has been calculated for V > 0 near a
dipole-dipole resonance, where the dipolar dimer is weakly
bound. At ultracold energies, our calculation shows that
only the lowest three-body continuum channel is important
for recombination, and K3 is dominated by recombination
into the weakly bound dipole plus dipolar dimer channel,
having the lowest effective angular momentum barrier
asymptotically. Figure 3 shows the scaling coefficient C3

near m2d ¼ 1 dipole-dipole resonances for a few dl with
different short-range interactions. The dipole-dipole reso-
nances with higher m2d are not of current interest because
of their extremely narrow widths [16]. Dimensional analy-
sis has suggested, and our numerical results in Fig. 3
confirm, that a universal scaling of C3 exists,

C3 ¼ �V17=2d�35=2
‘ ; (8)

where dimensionless � � 2� 109. This scaling is stronger
with V than for nondipolar interactions [9,10]. Although
Eq. (8) also seems to imply a strong suppression of three-
dipole recombination with d‘, instead, a general scaling of
C3 / d8‘ is expected away from a dipole-dipole resonance,

due to the d3‘ scaling of the background value of V [18].

This rapid growth of C3 with d‘ may be unfortunate for
experiments that require stable fermionic dipolar gas in
three dimensions, since three-dipole recombination can be
dramatic even in the ultracold threshold regime (kd‘ � 1).
On the other hand, scenarios exist where three-body re-
combination has a positive role, as a means to produce
weakly bound dipolar dimers that are stable against colli-
sion with a free dipole, in close analogy to the technique
used in ultracold spin-mixed fermions with nondipolar
interactions [19].

Finally, consider the behavior of deeply bound dipole
plus dipolar dimer channels and their impact on the stabil-
ity of a mixed gas containing both dipoles and dipolar
dimers. Similar to the bosonic dipole case [5], these chan-
nels have a centrifugal barrier characterized by a nonin-
teger effective angular momentum quantum number, and it
grows with increasing d‘. Although our numerical study
shows that this d‘ dependence is nonuniversal, the effective
angular momentum barrier can nevertheless ‘‘protect’’ a
mixture of dipoles and dipolar dimers from collisional
decay and it may provide an alternative way to tune inter-
actions in a mixed-species gas.
In summary, a class of universal physics has been iden-

tified for three fermionic dipoles. For scattering volumes
near a dipole-dipole resonance, one universal three-dipole
state exists at an energy near the three-dipole breakup
threshold. This state has a universal geometry and orienta-
tion in the external field, with a variable size dependent on
d‘. Moreover, its long lifetime can be beneficial for ex-
perimental observation and manipulation. Our study also
shows a universal trend of the three-dipole recombination
rate, which increases rapidly near each dipole-dipole reso-
nance and grows rapidly with stronger dipolar interactions.
And, the effective repulsion between a dipole and a dipolar
dimer can be tuned to control collisions in mixed quantum
gases.
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