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By combining different ideas, a general and efficient protocol to deal with discontinuous phase

transitions at low temperatures is proposed. For small T’s, it is possible to derive a generic analytic

expression for appropriate order parameters, whose coefficients are obtained from simple simulations.

Once in such regimes simulations by standard algorithms are not reliable; an enhanced tempering method,

the parallel tempering—accurate for small and intermediate system sizes with rather low computational

cost—is used. Finally, from finite size analysis, one can obtain the thermodynamic limit. The procedure is

illustrated for four distinct models, demonstrating its power, e.g., to locate coexistence lines and the phase

density at the coexistence.
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First-order phase transitions (FOPTs) are ubiquitous in
nature [1], associated with a countless number of processes
[2]. Also, they take place in different temperature scales,
e.g., from 2800 K in Earth’s core mantle [3] to the few and
near zero Kelvin range (for many systems, in a rather
similar way [4]), or even being responsible for unique
effects, but across a very broad range of T ’s [5]. In par-
ticular, FOPTs at low temperatures underpin important
phenomena, like field-induced metal-insulator transitions,
magnetoresistance, superfluidity, and Bose-Einstein con-
densation, among many others.

So it is understandable and desirable that a multitude of
approaches (mainly numerically [6] given the difficulty to
obtain general exact results [7]) developed to study FOPTs.
In certain instances, nevertheless, many of them can face
procedural difficulties, not leading to precise results for the
sought thermodynamical quantities, say, the exact location
of coexistence lines.

As particularly powerful simulation tools we can cite
cluster algorithms [8], multicanonical [9], and the Wang-
Landau methods [10]. In cluster algorithms, nonlocal con-
figuration exchanges often ensure the crossing of (even
high) free-energy barriers. But a drawback is its special-
ization: each model requires a specific and efficient algo-
rithm to implement the transitions, not available in many
cases. On the other hand, the Wang-Landau and multi-
canonical methods are general and have been applied
successfully in a great diversity of problems. However,
the former may demand very large computational time to
calculate the density of states, specially considering that
the number of states can increase very fast with the system
size [11]. The latter relies on histogram reweighting tech-
niques to obtain the appropriate averages, a difficult task
for large systems (see, e.g., [12]).

Given so, here we present a protocol to study FOPTs at
low temperatures by means of direct and simple numerical
simulations. Extending previous results [13], the protocol
considers, around any transition, a general parametric

analytical expression for relevant thermodynamic quanti-
ties (like order parameter, density, magnetization, com-
pressibility, etc.). The parameters are then obtained by
simulating small systems, making the approach computa-
tionally fast. Finally, from proper extrapolations, the cor-
rect thermodynamic limit is obtained. Since standard
algorithms usually fail for FOPTs at low T’s, even for
small systems, we consider tempering methods (already
proven reliable for FOPTs, see [14,15] and references
therein). Thus, we use the parallel tempering, PT, which
is very efficient for small and intermediate system sizes.
As we exemplify with four different lattices models, the
approach leads to a precise way to determine the coexis-
tence regions.
We begin recalling a rigorous analysis for finite systems

having N coexisting phases at ��, with � an appropriate
phase transition parameter control (e.g., temperature or
chemical potential). It has been shown [16] that at low
T’s and around ��, the partition function is very accurately
given by Z ¼ PN

n¼1 �n exp½��Vfn�, with � ¼ ðkTÞ�1.

For the phase n, fn is the (metastable) free energy [16]
per volume V and �n is the degeneracy, resulting from
eventual symmetries of the problem.
Next observe thatW ¼ �@� ln½Z�=ð�VÞ (@x � @=@x) is

frequently the start point to calculate distinct order parame-
ters (density, magnetization, etc.). Since close to ��, fn �
f� þ f0�n y [17] for f0�n ¼ @��fnð��Þ and y � �� ��, we
find the following general form for W:

W ¼
�

b1 þ
XN

n¼2

bn exp½�any�
���

1þ XN

n¼2

cn exp½�any�
�

:

(1)

The coefficients an, bn, and cn depend on ��, f0�n , T, and
other system parameters. But only the an’s are (linear)
functions of V. Then, at the coexistence (y ¼ 0) W is
independent on the volume and for all V the curves
W � � cross at � ¼ ��. In this way, Eq. (1) can be used
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not only to locate the transition point, but also to
determine the coexistence order parameters at the thermo-
dynamic limit. Moreover, if the f’s are ordered such
that f0�1 ¼ f0�2 ¼ � � � ¼ f0�m < f0�mþ1 < � � �< f0�k ¼ f0�kþ1 ¼� � � ¼ f0�N , for V ! 1 and y ! 0� we have W� ¼
Pn¼u�

n¼v� bn=cn, with vþ ¼ 1, uþ ¼ m, v� ¼ k, u� ¼ N .
For k ¼ N (m ¼ 1)Wþ (W�) is given in terms of the sole
phase which is immediately to the right (left) of ��.

Thus, considering relatively small V’s we can obtain the
a, b, and c parameters, and hence, from the curves W,
appropriate order parameters and response functions—e.g.,
through derivatives of the order parameter at the transition
point. For instance, if � ¼ � is the chemical potential,
�ð�; TÞ ¼ �W is the density and � ¼ @��jT is the iso-

thermal compressibility. Finally, from a simple scaling
analysis [18], but using analytical smooth expressions,
the thermodynamical properties are determined.

The above will work properly only with methods which
correctly sample the configuration space [8,10], yielding
reliable fittings for Eq. (1) parameters. Often, this is not so
when systems displaying strong discontinuous transitions
are simulated by conventional one-flip approaches, even
for small sizes. The solution is then to consider enhanced
sampling, like parallel [19] and simulated [20] tempering
algorithms, PT and ST. Since the former is particularly
appropriate for FOPTs (see [14] for details as well as for
implementation), here we use the PT in our ‘‘combo’’
procedure for phase transitions at low T’s.

To illustrate the protocol, next we analyze four different
lattice models displaying strong FOPTs at low T’s. In each
case, what operationally sets a low temperature is the
validity of the previously discussed Z decomposition.
Physically, it corresponds to T’s for which there is no
overlap between the peaks of the order parameter bimodal
distribution at the coexistence. In all examples we perform
accurate numerics with the PTalgorithm and compare with
the general Eq. (1), whose parameters are always obtained
using only four points from the simulations.

As the first example, we consider a rather complex
system, the associative lattice-gas (ALG) model [21],
aimed to reproduce liquid polymorphism and waterlike
anomalies. A site i may or may not be occupied (�i ¼ 1
or 0) by a molecule in a triangular lattice. The orientational

variable �iji ¼ 0, 1 represents the possibility of hydrogen
bonding (in a maximum of four) between the molecule in
site i and those in the adjacent six neighbors j, taking place

if �iji �
ji
j ¼ 1. The two first neighbor molecules have an

interaction energy of �v (� vþ 2u) if there is (there is
not) a hydrogen bond between them. The Hamiltonian
reads

H ¼ 2u
X

hi;ji
�i�jf½1� v=ð2uÞ� � �iji �

ji
j g ��

X

i

�i: (2)

It presents one gas and two liquid, LDL and HDL, phases
of densities � ¼ 0, � ¼ 3=4, and � ¼ 1, respectively.

For fixed T, by increasing � we pass through two
FOPTs, namely, gas-LDL and LDL-HDL.
We study the ALG model gas-LDL and LDL-HDL

FOPTs by plotting the density vs � for T ¼ 0:300, u ¼
v ¼ 1, and different V’s. For the gas-LDL case, we show
the results in Fig. 1(a). We clearly see a good coincident
crossing of all curves at � ¼ �1:9986ð2Þ, for � ¼
0:600ð1Þ. The exact transition density � ¼ 3=5 ¼ 0:6 is
understood recalling that at the coexistence both gas
(� ¼ 0) and LDL (� ¼ 3=4) phases have equal weight.
Given that �LDL ¼ 4, the value follows. Around LDL-
HDL, � does not vanish, inset of Fig. 1(a). Since 3=4
(the totality) of the lattice is filled by molecules in the
LDL (HDL) phase, a better order parameter is the rescaled
density	 ¼ ð4�� 3Þ. Thus, in Fig. 1(b) we display	��
for the LDL-HDL transition. Again, all the isotherms are
well described by Eq. (1), crossing at � ¼ 2:0000ð3Þ with
� ¼ 0:857ð1Þ. In the Fig. 1(b) inset we confirm the ex-
pected linear dependence on V for the parameter a2 ¼ a (a
single a once we have only two phases in each transition).
Next we consider the Bell-Lavis (BL) model, which also

displays waterlike anomalies. The sites may or may not be
occupied (�i ¼ 1 or 0) by molecules of two possible
orientations. But differently from the ALG, the
van der Waals interaction between two adjacent molecules
is attractive,�
vdw. So, there is no energetic punishment if
hydrogen bonds (of energy �
hb) are not formed. Such
distinctions from the ALG, e.g., result in a second-order
phase transition for LDL-HDL, but still a FOPT for the
gas-LDL. It is described by (� � 
vdw=
hb)
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FIG. 1. The ALG model for the parameters as in the text and
different V ¼ L� L. The continuous lines are curves from
Eq. (1) for: (a) ��� around the gas-LDL transition (the inset
shows ��� in the whole � range where the two FOPTs take
place); and (b) 	ð¼ 4�� 3Þ �� around the LDL-HDL tran-
sition. The blowup shows the crossing for L ¼ 8, 12, 20. The
expected linear a� V behavior is displayed in the inset of (b)
(the log-log scale is just for accommodating both cases). For
comparison, the simulations for V ¼ 4� 2 are exact.
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H ¼ �
hb
X

hi;ji
�i�j½�iji �jij þ �� ��

X

i

�i: (3)

For � < 1=3, the BL model presents three phases, gas
(� ¼ 0), LDL (� ¼ 2=3 in a honeycomb structure), and
HDL (� ¼ 1) [22]. In the numerics we set 
hb ¼ 1 and

vdw ¼ 1=10.

For T ¼ 0:25, in Fig. 2 we plot ��� around the FOPT
gas-LDL. Once more, the simulations are well described
by Eq. (1). The isotherms cross at � ¼ �1:6528ð1Þ, with
� � 0:507ð2Þ very close to the exact � ¼ 1=2 (which can
be inferred as done for the ALG model). In the upper-left

inset we show � ¼ ð@�@�ÞT by properly differentiating

Eq. (1) (continuous lines) and by numerically simulating
� ¼ Vðh�2i � h�i2Þ. Note the remarkable agreement,
again illustrating the power of Eq. (1) to describe relevant
thermodynamic quantities around FOPTs. The upper-right
inset displays the values of � ¼ �V (for which � is
maximum) vs V�1. This type of scaling extrapolation
also can give the thermodynamic limit for the transition,
here � ¼ �1:6527, basically the same value obtained
from the crossing. Finally, instead of � one could take T
as the control parameter. Setting � ¼ �1:6528 and vary-
ing T we see in the lower inset of Fig. 2 the gas-LDL
transition. As it should be, the curves cross at T ¼ 0:25,
with � � 1=2. Finally, we note that for T > 0:43, the
results from the present method start to be less accurate.

The Blume-Emery-Griffiths (BEG) model yields [23]

H ¼ �X

hi;ji
½J�i�j þ K�2

i �
2
j � �

X

i

½H�i �D�2
i �; (4)

where a site i is either empty or occupied by two different
types of species (�i ¼ 0, �1). Parameters J and K are
interaction energies and D and H denote a linear combi-
nation of the chemical potential �’s of the species. This
system is a particularly interesting test because the other-
wise very reliable cluster algorithm for the BEG model [8]
fails for some particular K=J’s, e.g., the value we address,
namely, K=J ¼ �0:5. So, for a better comparison with our
procedure, we also propose a new cluster-Metropolis hy-
brid approach, which includes intermediary Metropolis
algorithm steps (details will appear elsewhere). We note,
nevertheless, that the Metropolis alone is not able to cross
the high free-energy barriers at the phase coexistence.
In Fig. 3 we plot ��D for H ¼ 0, J ¼ 1, K ¼ �0:5,

T ¼ 0:20, and different V’s. We have a FOPT with all the
isotherms crossing at D ¼ 0:9984ð1Þ and � � 2=3. The
right inset of Fig. 3 shows the position DV of the peak of

� ¼ �ð@�@DÞT , calculated directly from Eq. (1). A linear

extrapolation of DV � V�1 gives D ¼ 0:998 45ð5Þ, in
excellent agreement with the crossing value. For V ¼
10� 10, we plot in the left inset simulations from the
usual cluster, the improved (but dedicated) cluster-
Metropolis, and PT algorithms. The latter two display
very good concordance, with the cluster given poorer
results. We should mention that for the BEG and ALG
models there are no precise simulations in the literature for
the parameter conditions here considered.
Lastly, we discuss the asymmetric Ising Hamiltonian on

a triangular lattice [of sublattices (�, �, �)] [24]

H ¼ �J
X

hi;ji
�i�j � K

X

hi;j;ki
�i�j�k �H

X

i

�i: (5)
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FIG. 2. For the BL model gas-LDL FOPT and parameters as in
the text, ��� for distinct V’s and T ¼ 0:25. All the continuous
lines are properly obtained from Eq. (1). The upper insets show
the isothermal compressibility � vs� and�V (the values of � at
the peaks of �) vs V�1. The lower inset shows �� T curves for
� ¼ �1:6528, which cross at T ¼ 0:25.
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The second sum is over trios of first neighbors forming
triangles. Using the Wang-Landau method [10], the model
has been studied in detail [25] (but for larger systems
and lower numerical precision). It displays one ferrimag-
netic, (��þ ), and two ferromagnetic, (þþþ ) and
(��� ), phases. For very low temperatures, by increas-
ing H the system displays a second-order phase transition
ð���Þ!ð��þÞ and then a FOPT ð��þÞ!ðþþþÞ.
The (��þ ) phase disappears in a critical endpoint
(Tc ¼ 2:443ð1Þ, Hc ¼ �2:934ð1Þ), above it giving rise
only to a FOPT between the two ferromagnetic phases.
Although the magnetization per site m is not the actual
order parameter, for rather small system sizes we can
extract from it any relevant FOPT information.

In Fig. 4 we plotm�H for J ¼ 1, K ¼ 2 and T ¼ 5:00
for the ð� ��Þ ! ðþþþÞ FOPT. We see that Eq. (1)
represents quite well the transition. In the right inset we
show the histogram magnetization density probability Pm

vs m for L ¼ 12, T ¼ 5:00 and H ¼ �2:3325, illustrating
further that the phase coexistence is being properly char-
acterized [14]. Likewise, the FOPT ð� �þÞ ! ðþþþÞ
for T ¼ 2:40 in the left inset is well described by our
method. All the isotherms cross at H ¼ �2:2863ð5Þ and
H ¼ �2:9357ð5Þ (left inset), in fair agreement (given the
different numerical accuracies) with the estimates H ¼
�2:284ð1Þ andH ¼ �2:939ð1Þ by the authors of Ref. [25].

By considering Eq. (1), derived from rigorous results at
low T’s, we have proposed a general protocol to study
FOPTs. It is accurate and demands only few simulations
for relatively small systems, hence a computationally low
cost procedure. The approach has been very successfully
applied to four distinct lattice models. Of course, more
analyses, e.g., for higher dimensions and continuous sys-
tems (presently under progress, with promising prelimi-
nary findings) are in order as further tests. Nevertheless, we

believe the method already shows itself a valuable tool to
analyze the very important problem of FOPTs at low
temperatures.
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[16] C. Borgs and R. Kotecký, J. Stat. Phys. 61, 79 (1990); ,

Phys. Rev. Lett. 68, 1734 (1992).
[17] For the details about the analyticity of the f’s see [16].
[18] W. Janke, Phys. Rev. B 47, 14757 (1993).
[19] K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604

(1996); C. J. Geyer, in Computing Science and Statistics:

Proceedings of the 23rd Symposium on the Interface,

edited by E.M. Keramidis (Interface Foundation of

North America, Fairfax Station, VA, 1991), pp. 156–163.
[20] E. Marinari and G. Parisi, Europhys. Lett. 19, 451

(1992).

-2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2

H

-0.3

0

0.3

0.6

0.9
m

V=6x6
V=9x9
V=12x12

-0.5 0 0.5 1m
0

0.03

0.06

0.09

P
m

-3 -2.95 -2.9 -2.85

-0.2

0

0.2

0.4

0.6

V=3x3

FIG. 4. m�H for distinct V’s and T ¼ 5:00 (T ¼ 2:40, left
inset) for the asymmetric Ising model and parameters as in the
text. Continuous lines are the curves from Eq. (1). The right inset
shows Pm �m for the T ¼ 5:00 case.

PRL 107, 230601 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

2 DECEMBER 2011

230601-4

http://dx.doi.org/10.1103/RevModPhys.71.S346
http://dx.doi.org/10.1038/nature02701
http://dx.doi.org/10.1038/nature02701
http://dx.doi.org/10.1016/j.epsl.2004.10.040
http://dx.doi.org/10.1016/j.epsl.2004.10.040
http://dx.doi.org/10.1126/science.270.5238.961
http://dx.doi.org/10.1103/PhysRevLett.100.117602
http://dx.doi.org/10.1103/PhysRevLett.100.117602
http://dx.doi.org/10.1103/PhysRevB.54.359
http://dx.doi.org/10.1103/PhysRevB.54.359
http://dx.doi.org/10.1103/PhysRevB.68.064113
http://dx.doi.org/10.1103/PhysRevB.68.064113
http://dx.doi.org/10.1016/0370-2693(91)91256-U
http://dx.doi.org/10.1103/PhysRevLett.68.9
http://dx.doi.org/10.1103/PhysRevLett.86.2050
http://dx.doi.org/10.1103/PhysRevLett.86.2050
http://dx.doi.org/10.1103/PhysRevE.73.036702
http://dx.doi.org/10.1103/PhysRevE.73.036702
http://dx.doi.org/10.1103/PhysRevE.80.051117
http://dx.doi.org/10.1103/PhysRevE.80.051117
http://dx.doi.org/10.1016/j.jmgm.2003.12.009
http://dx.doi.org/10.1016/j.jmgm.2003.12.009
http://dx.doi.org/10.1103/PhysRevE.76.021118
http://dx.doi.org/10.1103/PhysRevE.76.021118
http://dx.doi.org/10.1103/PhysRevE.82.031104
http://dx.doi.org/10.1103/PhysRevE.82.031104
http://dx.doi.org/10.1063/1.3519813
http://dx.doi.org/10.1063/1.3519813
http://dx.doi.org/10.1007/BF01013955
http://dx.doi.org/10.1103/PhysRevLett.68.1734
http://dx.doi.org/10.1103/PhysRevB.47.14757
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1209/0295-5075/19/6/002
http://dx.doi.org/10.1209/0295-5075/19/6/002


[21] V. B. Henriques and M. C. Barbosa, Phys. Rev. E 71,
031504 (2005); A. L. Balladares, V. B. Henriques, and
M.C. Barbosa, J. Phys. Condens. Matter 19, 116105
(2007).

[22] G.M. Bell and D.A. Lavis, J. Phys. A 3, 568 (1970); C. E.
Fiore, M.M. Szortyka, M.C. Barbosa, and V.B.
Henriques, J. Chem. Phys. 131, 164506 (2009).

[23] M. Blume, V. J. Emery, and R. B. Griffiths, Phys. Rev. A 4,
1071 (1971); W. Hoston and A.N. Berker, Phys. Rev. Lett.
67, 1027 (1991).

[24] K. K. Chin and D. P. Landau, Phys. Rev. B 36, 275
(1987).

[25] S. H. Tsai, F. Wang, and D. P. Landau, Phys. Rev. E 75,
061108 (2007); (private communication).

PRL 107, 230601 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

2 DECEMBER 2011

230601-5

http://dx.doi.org/10.1103/PhysRevE.71.031504
http://dx.doi.org/10.1103/PhysRevE.71.031504
http://dx.doi.org/10.1088/0953-8984/19/11/116105
http://dx.doi.org/10.1088/0953-8984/19/11/116105
http://dx.doi.org/10.1088/0305-4470/3/5/015
http://dx.doi.org/10.1063/1.3253297
http://dx.doi.org/10.1103/PhysRevA.4.1071
http://dx.doi.org/10.1103/PhysRevA.4.1071
http://dx.doi.org/10.1103/PhysRevLett.67.1027
http://dx.doi.org/10.1103/PhysRevLett.67.1027
http://dx.doi.org/10.1103/PhysRevB.36.275
http://dx.doi.org/10.1103/PhysRevB.36.275
http://dx.doi.org/10.1103/PhysRevE.75.061108
http://dx.doi.org/10.1103/PhysRevE.75.061108

