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Quantum simulators are controllable systems that can be used to simulate other quantum systems. Here

we focus on the dynamics of a chain of molecular qubits with interposed antiferromagnetic dimers. We

theoretically show that its dynamics can be controlled by means of uniform magnetic pulses and used to

mimic the evolution of other quantum systems, including fermionic ones. We propose two proof-of-

principle experiments based on the simulation of the Ising model in a transverse field and of the quantum

tunneling of the magnetization in a spin-1 system.
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The simulation of quantum systems by a classical com-
puter is intrinsically inefficient because the required num-
ber of bits grows exponentially with the system size. This
makes many important problems in physics and chemistry
intractable. Such a limitation might be overcome by quan-
tum simulators (QSs), whose dynamics can be controlled
so as to mimic the evolution of the target system [1].

The implementations of quantum simulators so far pro-
posed essentially fall into one of two categories [2]. In the
first one, large and globally addressable systems are used to
analogically simulate specific target Hamiltonians. In the
second one, QSs consist of a few, individually addressable
qubits, and the time evolution of any target system can be
discretized into a sequence of logical gates. Here we
propose a hybrid approach, where the simulation of differ-
ent kinds of translationally invariant models is performed
by exploiting chains of molecular nanomagnets, manipu-
lated by means of spatially homogeneous magnetic fields.
As in analog QSs, our hardware consists of a potentially
large array of qubits, with a geometry reflecting that of the
target system, and no local control required. As in digital
QSs, the manipulation of the QS state is here achieved by
suitable sequences of quantum gates, performed in parallel
on the whole array. This permits the simulation of a large
class of models for each given geometry.

Our proposal exploits two classes of molecular nano-

magnets [3] that play two distinct roles: (effective)

S ¼ 1=2 spins are used for encoding the qubits; these are

connected through antiferromagnetic systems with non-

magnetic ground state (S ¼ 0), that can be controllably

excited so as to effectively switch the coupling between the

qubits. The capability of engineering complex structures

consisting of weakly coupled and monodispersed systems

has been recently demonstrated in molecular magnetism

[4]. The wide tunability of both the intra- and intermolec-

ular interactions, combined with the possibility of coher-

ently driving the spin dynamics [5,6], makes these systems

suitable for both spintronics [7] and quantum-information

[8–12] applications. In addition, nanomagnets can be
grafted onto surfaces without altering their properties [13].
We start by considering different kinds of one-

dimensional, translationally invariant Hamiltonians H
that can be mapped onto a model of 1=2 spins si, with
nearest-neighbor (NN) interactions and Hamiltonian H.
Our aim is to simulate the time evolution associated with
H [’’target evolution’’ UðtÞ] by means of the proposed
hardware. The first step is to approximate UðtÞ by the
Trotter-Suzuki formula (@ ¼ 1):

UðtÞ ¼ e�iHt ’ ½e�iHð2Þ
odd

�e�iHð2Þ
even�e�iHð1Þ��n; (1)

where H ¼ Hð2Þ
odd þHð2Þ

even þHð1Þ. The contributions Hð2Þ
odd

(Hð2Þ
even) include all the two-spin terms hð2Þoddðs2k�1; s2kÞ

[hð2Þevenðs2k; s2kþ1Þ], while Hð1Þ includes all the single-spin

terms. Since Hð2Þ
odd, H

ð2Þ
even, and H1 generally do not com-

mute, Eq. (1) is only exact in the limit � � t=n ! 0.
Each of the three terms in parentheses in Eq. (1) can be
factorized into either single- or two-spin evolution opera-

tors. For example, under the effect of expð�iHð2Þ
odd�Þ ¼

�N=2
k¼1 exp½�ihð2Þoddðs2k�1; s2kÞ�� (with N the number of

spins), each pair evolves in the same way, and indepen-
dently of all the others.
In order to simulate the dynamics of the spin chain, we

encode its odd- and even-numbered spins into the state of
two physically distinguishable kinds of spin qubits,A andB,
in the quantum hardware: s2k�1 ! SA

k and s2k ! SB
k

[Fig. 1(a)]. Note that hereafter we use capital letters to
indicate the spins and times of the quantum simulator. In
the latter, each pair SA

kS
B
k (SB

kS
A
kþ1) is physically connected

through a spin cluster MAB (MBA), whose state can be
manipulated so as to effectively switch the coupling be-
tween the qubits.MAB being spectrally distinguishable from
MBA, it will be possible to selectively switch the AB or BA
couplings, still by means of spatially homogeneous em
pulses (see below). The time-evolution operator

expð�iHð2Þ
odd�Þ, is implemented by performing sequences
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of identical single- and two-qubit operations on the pairs
SA
kS

B
k . Such pulse sequence induces on the pair of qubits the

same time evolution induced in the time � by hð2Þodd on the

spin pair s2k�1s2k. Analogously, sequences of pulses ap-
plied to the qubit pairs SB

kS
A
kþ1 reproduce the time evolution

induced on the spin pairs s2ks2kþ1 by the terms hð2Þeven. The

contribution of the single-spin Hamiltonian Hð1Þ is simu-
lated instead by single-qubit rotations performed simulta-
neously on all the qubits. We stress that the parameters
defining H can be easily varied in the simulation by appro-
priately choosing the phases of the pulse sequence [see
discussion below Eq. (3)]. Thanks to the translational in-
variance of the simulated system, the numberNop of opera-

tions (i.e., pulses) does not depend on the chain lengthN. In
fact,Nop is proportional tonl,where l is the number of terms

into which e�iH� is factorized [see Eq. (1)]. Besides, in
many models of interest H (e.g., symmetric exchange
between 1=2 spins), theA andB units need not be physically
different.

Switching the coupling between spin qubits.—Turning
on and off a physical exchange interaction between
molecular nanomagnets on a ns time scale is presently
unfeasible. Here we show that the effect of a switchable
coupling between two nearby spin qubits A and B can be
obtained by manipulating the interconnecting spin cluster
M between them. As an illustrative example, we consider
the case where M is a dimer, consisting of two
antiferromagnetically coupled spins (with SM1 ¼ SM2 ¼
1=2, see Fig. 1). The simplest qubit-dimer-qubit unit is
described by the Hamiltonian

HAMB¼½HAþHBþHM�þ½HAMþHBM�
¼½�BB0ðgAz SAz þgBz S

B
z þgMz ðSM1zþSM2zÞÞþ�SM

1 �SM
2 �

þ
�
J

X
�¼A;B

X
i¼1;2

S� �SM
i

�
; (2)

where g
�
z are gyromagnetic factors, and the last term is the

qubit-dimer coupling, whose energy scale J is typically
much smaller than �BB0 and �. For instance, a similar
effective Hamiltonian results from two Cr7Ni rings linked
through a Cu2 dimer [4], where the rings play the role of
the spin qubits. Many generalizations of Eq. (2), including
less symmetric patterns of qubit-dimer exchange cou-
plings, do not alter the validity of the proposed scheme.
The field dependence of the energies resulting from Eq. (2)
is depicted in Fig. 1. The four lowest states match those of
the two isolated A and B qubits. In fact, as far as the dimer
is in its singlet ground state, hHAMi ¼ hHBMi ¼ 0 for
any two-qubit state; therefore, A and B are effectively
uncoupled, whereas they do communicate if the dimer
is sent by an em pulse to an excited state. Indeed, the
12 upper states have energies with fine splittings deter-
mined by J.
This level scheme can be exploited to simulate the

dynamics of two spins induced by a Hamiltonian hð2Þ ¼
�s1�s2� for any choice of �;� ¼ x, y, z. The operator

expð�ihð2Þ�Þ can be decomposed as follows:

expð�i�s1�s2��Þ ¼ ½u1� � u2��e�i��½u1� � u2��y; (3)

where � ¼ �s1zs2z, ux ¼ ð2syÞ1=2, uy ¼ ð2sxÞ�1=2, and

uz ¼ I. In the physical hardware described by Eq. (2),
the single-qubit rotations u� can be implemented by em
pulses with frequencies BgAz and BgBz , respectively (while
M is left in its ground state). The two-qubit operator e�i��

would in principle require a direct interaction between A
andB. Here, instead, it is implemented by inducing inM an
excitation conditioned to the state of the spin qubits A and
B. This is obtained through two simultaneous � pulses,
resonant with the gaps indicated by arrows in Fig. 1,
followed by a repetition of the two pulses that bring the
dimer back to its singlet ground state. The value of �� of
the target evolution is controlled by the phase difference
between the first and the second pair of pulses. Hence, the

ABMAB

            

            

            

            

A MBA

FIG. 1 (color online). Top: chain of the A and B spin qubits,
with interposed antiferromagnetic dimers MAB and MBA. The
level schemes of the noninteracting units is also illustrated.
Bottom: Magnetic field dependence of the energy levels
for a A�M� B system [Eq. (2)], with gAz ¼ 1:8, gBz ¼ 2:0,
gMz ¼ 2:3, J ¼ 1 cm�1, � ¼ 30 cm�1. When the dimer is in the
singlet ground state (4 lowest levels), the qubits behave as if
they were noninteracting. If the dimer is in triplet states (12
highest levels), the energy levels depend on the dimer-qubit
couplings.
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parameters defining the Hamiltonian we want to simulate
can be easily varied since these merely determine the
phases of the pulse sequences.

In Fig. 2 we demonstrate the validity of this scheme by
simulating the evolution operator for some representative

choices of �� in hð2Þ. We start from the four possible two-
qubit basis states jc ii (corresponding to the four lowest
eigenstates of HAMB, with i ¼ 1; . . . ; 4), and we calculate
their time evolution jc iðTÞi induced byHAMB [Eq. (2)] and
by the pulse sequence. The matrix elements of the resulting
transformation, ~UjiðTÞ � hc jjc iðTÞi, are compared with

those of Uð�Þ between the corresponding states of the
system to be simulated: the distance between the two is
assessed by RðTÞ ¼ maxi;jj ~UjiðTÞ �Ujið�Þj2. At the end

of the pulse sequence (T ¼ Tf), ~UjiðTfÞ coincides with

Ujið�Þ, showing that the two qubits have actually under-

gone the desired unitary transformation (Fig. 2) [14]. For
the chosen, realistic parametrization, the duration of these
simulations is of the order of 102 ns. This is well below the
expected decoherence times for optimally engineered mo-
lecular qubits, of the order of several microseconds [5]. At
low temperatures, the coherence of each nanomagnet is
limited by the hyperfine coupling to the nuclear spins, and
the noise has a local character (i.e., each molecule interacts
mainly with its own bath of nuclear spins) [15]. The effects
of such coupling can be partially canceled by spin-echo

sequences. These imply the use of additional pulses, that
can, however, be applied in parallel to the whole array, and
thus independently on the system size.
Quantum simulation of a spin-1=2 chain.—A simple

proof-of-principle experiment can be performed by simu-
lating the time evolution of the transverse-field Ising
model (TIM):

H TIM � HTIM ¼ �
XN�1

k¼1

skzsðkþ1Þz þ b
XN
k¼1

skx; (4)

with sk ¼ 1=2. The mapping of HTIM onto the qubit chain
is straightforward: s2k�1 ! SA

k and s2k ! SB
k . Performing

a single Trotter step of the TIM entails simulating e�i��

with � ¼ �, followed by a rotation of two qubits around x
by an angle b�. The convergence of the simulated TIM
evolution to the target evolution is shown in Fig. 2. For a
generic value of �=b the TIM evolution brings the system
from a factorized initial state to multipartite entangled
ones. This is shown in the inset of Fig. 2 for the case
N ¼ 3. Here jc ðtÞi starts from a ferromagnetic state and
it evolves passing through GHZ-like states [16]. This evo-
lution is witnessed by oscillations of the magnetization,
whose frequencies are set by the energy gaps of the TIM.
Simulating S ¼ 1 spins and the Hubbard model.—The

simulation of Hamiltonians involving spins s > 1=2 or
fermions requires a suitable mapping onto the qubits.
For instance, we consider a chain of spins one (tk) with
NN exchange interactions and single-spin crystal-field
anisotropy:

H s1 ¼ �
XN�1

k¼1

tk � tkþ1 þ
XN
k¼1

½dt2kz þ eðt2kx � t2kyÞ�; (5)

which reduces to the paradigmatic Haldane model for
d ¼ e ¼ 0. H s1 can be mapped onto a Hamiltonian Hs1

of 2N spins 1=2, with NN interactions. Indeed, the dynam-
ics of a spin-1 chain is equivalent to that of a dimerized
spin-1=2 chain with twice the number of spins, provided
the isotropic exchange constant (Iiso) (see Fig. 3) is ferro-
magnetic and dominant. The three states jmk ¼ 0;�1i of
each spin tk ¼ 1 are mapped onto the three triplet states of
the pair of spins 1=2 (sk, lk), having total spin one. By
exploiting the Wigner-Eckart theorem, the crystal-field
terms are mapped onto axial (Iax) and rhombic (Irh)

FIG. 2 (color online). Simulation of the time-evolution opera-
tors expð�i�s1�s2�Þ (�� ¼ zz, yy, xy) for �� ¼ �=2.

Tf ¼ 180 ns is the duration of the pulse sequence; R, defined

in the text, quantifies the deviation of the implemented trans-
formation from the target evolution operator. The em pulses are
Gaussian and linearly polarized, with a peak amplitude of 50 G;
the static field is B ¼ 5 T. The qubits are assumed to be
magnetically isotropic, whereas for the dimer we set gAx � gBx ¼
gAy � gBy ¼ 1. R is also shown for a single Trotterization step of

the TIM Hamiltonian for two spins [Eq. (4)]. Inset: time oscil-
lations of the longitudinal average magnetization hPis

i
zi for the

TIM with N ¼ 3 and � ¼ 2b.

FIG. 3 (color online). From top to bottom: mapping of the
spin-1 Hamiltonian H s1 [Eq. (5)] onto a spin-1=2 one Hs1, and
encoding of Hs1 into the spin-qubit chain ABAB . . . .
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exchange terms: hð2Þoddðsk;lkÞ¼ Iisosk � lkþIaxskzlkzþ
Irhðskxlkx�skylkyÞ: The exchange interaction between tk
and tkþ1 in Eq. (5) is mapped instead onto a Heisenberg

coupling I between lk and skþ1 (Fig. 3): hð2Þevenðlk; skþ1Þ ¼
Ilk � skþ1.

Having mapped H s1 onto a chain of spins 1=2 with
NN interactions, we can now simulate its dynamics along
the lines traced above. Each spin-1=2 sk (lk) is encoded

into qubit A (B) and the operators expð�ihð2Þodd�Þ and

expð�ihð2Þeven�Þ are mimicked as outlined above. A simple
proof-of-principle experiment would be the simulation of a
single s ¼ 1 spin experiencing tunneling of the magneti-
zation (jej � jdj). For instance, Fig. 4 shows the exact
and simulated evolution of the magnetization in the case
d=e ¼ 12, which can be monitored by measuring the total
magnetization of the A�M� B system.

The mapping of a fermionic Hamiltonian onto a spin one
is generally nontrivial [17]. Hereafter, we use the Jordan-
Wigner representation in order to map the one-dimensional

Hubbard model, H Hub ¼ �tH
P

k	ðcyk	ckþ1	 þ H:c:Þ þ
U
P

knk"nk#, onto a chain of 1=2 spins [18]:

HHub ¼ NU=4� 2tH
XN�1

k¼1

X
�¼x;y

ðsk�sðkþ1Þ� þ lk�lðkþ1Þ�Þ

þU
XN
k¼1

skzlkz þU=2
XN
k¼1

ðskz þ lkzÞ (6)

where sk and lk are two families of spin-1=2 operators.
Unlike the previously considered cases, HHub is not a one-
dimensional Hamiltonian with NN interactions only, as

each spin couples to three other ones. This requires pro-
ceeding in two steps: initially we encode into the qubit
pairs (SA

k , S
B
k ) the spins (lk, sk) for even k and (sk, lk) for

odd k, respectively (see Fig. 5). The couplings between
pairs of spins that are encoded into neighboring qubits can
be simulated as for the previously considered models.
These couplings include the two z terms in Eq. (6) and
half of the xy terms, i.e., the even transverse s� s bonds
and the odd transverse l� l bonds. In order to simulate the
remaining transverse two-spin terms in HHub, correspond-
ing to couplings between qubits that are initially third
nearest neighbors, we swap the state of all the SA

kS
B
k pairs.

This SWAP gate can be performed by the same method used
to implement two-qubit operations. Third nearest neigh-
bors in HHub now correspond to NN in the simulator, and
the evolution induced by the associated couplings can be
simulated exactly as above.
The feasibility of our scheme with available technology

relies on the lack of local-control requirements, as only
uniform em pulses are involved. We have illustrated the
simplest possible implementation of the idea, working for
uniform or A� B 1-dimensional Hamiltonians. However,
extensions of this approach allow the simulation of a much
larger class of Hamiltonians, including higher-dimensional
ones. One possibility is to use spin-qubit arrays that repro-
duce the dimensionality D of the system to simulate, with
interposed nanomagnets M to switch the interaction be-
tween adjacent qubits. For instance, in a square lattice
Uð� ! 0Þ is first decomposed by the Trotter formula into
two evolution operators describing a collection of identical
chains (along x and y). The couplings within the chains can
then be simulated in parallel by the method described
above by using an array of nanomagnets with rectangular
symmetry. In fact, in order to selectively address the x and
y chains, the nanomagnets M switching the interaction
along one direction need to be spectrally distinguishable
from those operating on another direction.
Alternatively, it is possible to develop other simulation

schemes keeping a one-dimensional topology of the hard-
ware and the use of uniform pulses, at the cost of a more
complex and less parallel algorithm. The limiting case
(where all two-body terms in the Trotter-decomposed
time evolution are implemented sequentially) is repre-
sented by a scheme where half of the molecular qubits
are used as auxiliary units instead of logical qubits. The

FIG. 4 (color online). Line: exact time evolution of htzi for a
single spin one with d=e ¼ 12, Eq. (5). The state oscillates
between jm ¼ 1i and jm ¼ �1i due to quantum tunneling
across the anisotropy barrier. Points: time evolution simulated
by a single A�M� B unit initially prepared in its ground state.
The pulse sequence is set by the mapping of Eq. (5) onto the
Hamiltonian of two 1=2 spins (Fig. 3). We plot the z component
of total spin of the A�M� B unit, which could be easily
extracted by measuring the magnetization of a crystal of non-
interacting units. The duration Tf of the pulse sequence imple-

menting the simulation is about 480 ns, independently of the
simulated time t. Note that to perform each simulation (i.e., to
extract each point) the A�M� B unit has to be reinitialized to
its ground state.

FIG. 5 (color online). Mapping of the Hubbard model H Hub

onto the spin Hamiltonian HHub involving the sk and lk 1=2
spins.

PRL 107, 230502 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

2 DECEMBER 2011

230502-4



D-dimensional target Hamiltonian is mapped onto a 1D
Hamiltonian with long-range couplings. Since the latter
prevent adopting the scheme described above for nearest-
neighbor 1D Hamiltonians, the various two-body terms in
the target Hamiltonian are simulated sequentially by the
use of a control unit (in the spirit of [19]). Conditional
excitation of the interposed dimers remains a key ingre-
dient to induce the desired evolution, and the auxiliary
units are exploited to attain local control with uniform
pulses [20].

The capability of simulating Hamiltonians can also be
exploited in order to map experimentally accessible quan-
tities (O) onto a set of nonaccessible observables (O0 ¼
eiHtOe�iHt). Observables corresponding to (sums of)
single-qubit terms can be mapped, e.g., onto pair correla-
tion functions in the case where H corresponds to a dimer-

ized system (H ¼ Hð2Þ
odd or H ¼ Hð2Þ

even), or to higher-order

correlation functions in the case of a more general H [20].
In conclusion, we have shown that arrays of molecular

nanomagnets can be used as quantum simulators of differ-
ent model Hamiltonians with translational invariance and
short-range interactions. We have proposed proof-of-
principle implementations, where the means required for
manipulating the system and measuring the relevant ob-
servables can be provided by the current technology.
Nanomagnet-dimer-nanomagnet supramolecular trimers
and chains which can be exploited to implement our
scheme are also currently being synthesized [21].
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