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Gedanken experiments help to reconcile our classical intuition with quantum mechanics and nowadays

are routinely performed in the laboratory. An important open question is the quantum behavior of the

controlling devices in such experiments. We propose a framework to analyze quantum-controlled

experiments and illustrate it by discussing a quantum version of Wheeler’s delayed-choice experiment.

Using a quantum control has several consequences. First, it enables us to measure complementary

phenomena with a single experimental setup, pointing to a redefinition of complementarity principle.

Second, it allows us to prove there are no consistent hidden-variable theories having ‘‘particle’’ and

‘‘wave’’ as realistic properties. Finally, it shows that a photon can have a morphing behavior between

particle and wave. The framework can be extended to other experiments (e.g., Bell inequality).
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Wave-particle duality, a quintessential property of quan-
tum systems, defies our classical intuition. In the context of
the double-slit experiment, duality played a central role in
the famous Bohr—Einstein debate and prompted Bohr to
formulate the complementarity principle [1]: ‘‘the study of
complementary phenomena demands mutually exclusive
experimental arrangements.’’ Classical concepts like par-
ticle or wave (as in ‘‘wave-particle duality’’) do not trans-
late perfectly into the quantum language. For example,
although we observe interference (a definite wavelike be-
havior), the pattern is produced click-by-click, in a dis-
crete, particlelike manner [2]. Notwithstanding this
ambiguity, and with this proviso, we adopt as operational
definition of ‘‘wave’’ or ‘‘particle’’ to stand for ‘‘ability’’ or
‘‘inability’’ to produce interference [3].

A good illustration of wave-particle complementarity is
given by a Mach-Zehnder interferometer (MZI), Fig. 1. A
photon is first split by beam splitter BS1, travels inside an
interferometer with a tunable phase shifter ’, and is finally
recombined (or not) at a second beam splitter BS2 before
detection. If the second beam splitter is present we observe
interference fringes, indicating the photon behaved as a
wave, traveling both arms of the MZI. If BS2 is absent, we
randomly register, with probability 1

2 , a click in only one of

the two detectors, concluding that the photon travelled
along a single arm, showing particle properties.

This contradictory behavior prompted Wheeler to for-
mulate the delayed-choice experiment [4–8]. In Wheeler’s
delayed-choice experiment one randomly chooses whether
or not to insert the second beam splitter when the photon is
already inside the interferometer and before it reaches BS2
[Fig. 1(a)]. The rationale behind the delayed choice is to
avoid a possible causal link between the experimental

setup and photon’s behavior: the photon should not
‘‘know’’ beforehand if it has to behave like a particle or
like a wave. The choice of inserting or removing BS2 is
classically controlled by a random number generator.
In this article we examine what happens if we replace

this classical control with a quantum device. This enables
us to extend Wheeler’s gedanken experiment to a quantum
delayed choice. Quantum elements in various experimental

sinα|1〉cos

0

1

D

BS
1

0

1 ϕ

(a)

D’

2

(b)

ϕ
|0〉

|0〉

D

BS

(c)
ϕ D

D’

|0>

α|0〉 +      

(d)

ϕ

b=0,1

|0〉

|0〉

D
H b

H

HH

QRNG

H

H

QRNG

H

H

FIG. 1 (color online). (a) In the classical delayed-choice ex-
periment the second beam splitter is inserted or removed ran-
domly after the photon is already inside the interferometer.
(b) The equivalent quantum network. An ancilla (red line),
initially prepared in the state jþi ¼ 1ffiffi

2
p ðj0i þ j1iÞ then measured,

acts as a quantum random number generator (QRNG).
(c) Delayed choice with a quantum beam splitter. The classical
control (red double line) after the measurement of the ancilla in
(b) is equivalent to a quantum control before the measurement;
the second beam splitter BS2 is now in superposition of present
and absent, equivalent to a controlled-Hadamard CðHÞ gate.
(d) We bias the QRNG by preparing the ancilla in an arbitrary
state cos�j0i þ sin�j1i.
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set ups were proposed in the past [9]. In order to understand
the transition from a classical to a quantum controlling
element it is insightful to reframe the delayed-choice ex-
periment in terms of quantum networks [10,11]. A quan-
tum network model enables us to analyze the gedanken
experiment at a higher level of abstraction and to under-
stand the information flow between different subsystems.
The delayed-choice experiment is equivalent to the quan-
tum network in Fig. 1(b), where Hadamard gates H play
the role of beam splitters; we call the top (black) line the
photon and the bottom (red) line the ancilla. The quantum
random number generator is modeled by an ancilla pre-
pared in the equal-superposition state jþi ¼ 1ffiffi

2
p ðj0i þ j1iÞ,

then measured; the result of this measurement (0 or 1)
controls if BS2 is inserted or not. The classical control
after the measurement of the ancilla in Fig. 1(b) is equiva-
lent to a quantum control before the measurement of the
ancilla, Fig. 1(c). This seemingly innocuous observation
radically changes the setup and has two profound implica-
tions. First, since now we have a quantum beam splitter in
superposition of being present or absent, the interferometer
is in a superposition of being closed or open. Following
Wheeler’s interpretation of the experiment [5], this forces
the photon to be in a superposition of particle and wave at
the same time.

Second, and more important, a quantum control allows
us to reverse the temporal order of the measurements. We
can now detect the photon before the ancilla, i.e., before
choosing if the interferometer is open or closed. This
implies that we can choose if the photon behaves as a
particle or as a wave after it has been already detected
(postselection). Consequently, this avoids the experimen-
tally demanding requirement of an ultrafast switch neces-
sary in the classical delayed-choice experiment [8]. A
quantum control thus allows us to explore a regime outside
the classical realm: in any classically controlled experi-
ment the choice of inserting or not the second beam splitter
has to be made before the photon is detected. Since the
photon and the ancilla interact at the CðHÞ gate, the ancilla
is always prepared before the photon reaches BS2.

In Fig. 1(c), the photon-ancilla system starts in the state
j00i and at the end of the network the final state is

jc i ¼ 1ffiffiffi
2

p ðjparticleij0i þ jwaveij1iÞ; (1)

where the wave functions jparticlei ¼ 1ffiffi
2

p ðj0i þ ei’j1iÞ and
jwavei ¼ ei’=2ðcos’2 j0i � i sin’2 j1iÞ describe particle and

wave behavior, respectively. The two states are in general
not orthogonal hparticlejwavei ¼ 1ffiffi

2
p cos’, except for

’ ¼ ��=2. Equation (1) implies that if the ancilla is
measured to be j0i (j1i), the interferometer is open (closed)
and the photon behaves like a particle (wave). The
interference pattern measured by the photon detector
D0 is I0ð’Þ ¼ Trð�1j0ih0jÞ, with �1 ¼ Tr2jc ihc j ¼

1
2 ðjparticleihparticlej þ jwaveihwavejÞ the reduced density

matrix of the photon. The visibility of the interference
pattern is V ¼ ðImax � IminÞ=ðImax þ IminÞ, where the
min/max values are calculated with respect to ’. If the
interferometer is closed, the photon shows a wavelike
behavior with Iwð’Þ ¼ cos2 ’

2 and visibility V ¼ 1. For

an open interferometer the photon behaves like a particle
and Ipð’Þ ¼ 1

2 , resulting inV ¼ 0. For the entangled state

(1) the result is

I0ð’Þ ¼ 1
2½Ipð’Þ þ Iwð’Þ� ¼ 1

2 þ 1
4 cos’: (2)

Without correlating the photon data with the ancilla we
observe an interference pattern with reduced visibility
V ¼ 1

2 : the photon has a mixed behavior between a par-

ticle and a wave. On the other hand, if we do correlate the
photon with the ancilla we observe either a perfect wave-
like behavior (ancilla j1i) or a particlelike one (ancilla j0i).
Contrary to Bohr’s opinion, we do not have to change the
experimental setup in order to measure complementary
properties—we can measure both properties in a single
experiment, provided that a component of the apparatus
is a quantum object in a superposition state. The behavior
is postselected by the experimenter after the photon has
been detected, by correlating the data with the appropriate
value of the ancilla [12].
The photon in state jc i exhibits both wave and particle

behavior with equal probability. It is insightful to general-
ize this result to an arbitrary superposition. We achieve this
by preparing the ancilla in the state cos�j0i þ sin�j1i
before interacting with the photon [Fig. 1(d)]. In the clas-
sical setup [Fig. 1(a)] this choice corresponds to a biased
random number generator which outputs 0 with probability
cos2�. The final state becomes

jc 0i ¼ cos�jparticleij0i þ sin�jwaveij1i (3)

and the photon detector D0 now measures

I0ð’;�Þ ¼ Ipð’Þcos2�þ Iwð’Þsin2� (4)

with the corresponding visibility V ¼ sin2�. Thus, by
varying � we have the ability to modify continuously the
interference pattern—we have a morphing behavior be-
tween a particle at � ¼ 0 and a wave at � ¼ �=2 (Fig. 2).
This continuously varying behavior (morphing) raises

questions about the classical picture of a photon as either a
particle or a wave. A quantum beam splitter transcends the
‘‘particle-or-wave’’ dichotomy and enables preparation of
the photon in a superposition of both. For example, by
measuring the ancilla controlling the beam splitter in the
j�i basis, the photon state becomes cos�jparticlei �
sin�jwavei, a superposition without a classical analog.
The introduction of a quantum control (i.e., quantum

beam splitter) allows us to answer an important question:
Can a hidden-variable (HV) theory, in which particle and
wave are realistic properties, explain the delayed-choice
experiment? Such a model should satisfy two conditions:

PRL 107, 230406 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

2 DECEMBER 2011

230406-2



(i) it should reproduce the quantum mechanical (QM)
statistics, and (ii) for a given photon the property of being
a particle or a wave is intrinsic, i.e., does not change during
its lifetime. The second condition is very important, since it
selects from the existing HV theories [13] reproducing the
QM statistics those models having meaningful notions
of particle and wave. Moreover, a quantum control poten-
tially introduces new routes for causal influence, making
the HV analysis [13] more subtle. In the basis a � b ¼
ð00; 01; 10; 11Þ the statistics for the joint measurements of
the photon a and ancilla b in the state (3) is

pða; bÞ ¼
�
1

2
cos2�; sin2�cos2

’

2
;
1

2
cos2�; sin2�sin2

’

2

�
:

(5)

We show that there is no satisfactory HV model reproduc-
ing the statistics pða; bÞ and in which particle and waves
are realistic properties. One can assume that the source
randomly emits, with some probability, particle- or wave-
like photons. However, in order to have the statistics
pða; bÞ these ‘‘photons’’ show an inconsistent behavior:
in an open interferometer waves obey a particle statistics
and in a closed interferometer particles behave like waves,
showing interference. Consequently, the properties wave
and particle become meaningless.

Proof: We assume the photon has an extra degree of
freedom � (the hidden variable) corresponding to a
particlelike (� ¼ p) or a wavelike (� ¼ w) behavior. We
also assume the standard conditions for probability distri-
butions; for all variables i, j we have: (i) pðiÞ ¼ P

jpði; jÞ
(marginals) and (ii) pði; jÞ ¼ pðijjÞpðjÞ ¼ pðjjiÞpðiÞ
(conditionals).

In this HV model the probability distribution pða; bÞ is
the marginal of a distribution involving the hidden-variable
�, namely pða; bÞ ¼ P

�pða; b; �Þ, with pða; b; �Þ
unknown. We decompose this probability as pða; b; �Þ ¼
pðajb; �Þpðbj�Þpð�Þ, by replacing the seven parameters

pða; b; �Þ with another seven functions (the probabilities
in the right-hand side have four, two and, respectively, one
free parameter). This decomposition is appealing as the
new functions are physically intuitive, unlike pða; b; �Þ.
Thus we have

pða; bÞ ¼ X
�

pðajb; �Þpðbj�Þpð�Þ: (6)

Two of the conditional distributions pðajb; �Þ are con-
strained by the expectation of how particles (waves) be-
have in open (closed) interferometers. Consistent with our
previous definition, a particle in an open interferometer
(b ¼ 0) has the statistics

pðajb ¼ 0; � ¼ pÞ ¼ ð12; 12Þ; (7)

whereas a wave in a closed MZI (b ¼ 1) shows
interference,

pðajb ¼ 1; � ¼ wÞ ¼
�
cos2

’

2
; sin2

’

2

�
: (8)

The other two conditional probabilities specify the behav-
ior of a wave (� ¼ w) in an open (b ¼ 0) interferometer
and of a particle (� ¼ p) in a closed (b ¼ 1) one.
We denote these two unknown distributions by x and y,
respectively

pðajb ¼ 0; � ¼ wÞ ¼ ðx; 1� xÞ;
pðajb ¼ 1; � ¼ pÞ ¼ ðy; 1� yÞ:

The probability distribution of the ancilla pðbÞ is obtained
from Eq. (5) as the marginal of pða; bÞ

pðbÞ ¼ ðcos2�; sin2�Þ: (9)

By freely choosing � at the preparation stage we modify
pðbÞ, a fact which will prove crucial later.
For � we assume that the source randomly emits parti-

cle- or wavelike photons with probability f and 1� f,
respectively:

pð�Þ ¼ ðf; 1� fÞ:
The remaining two variables are the conditional probabil-
ity distributions of the ancilla b and the hidden variable �:

pðbj� ¼ pÞ ¼ ðz; 1� zÞ; pðbj� ¼ wÞ ¼ ðv; 1� vÞ;
satisfying the consistency condition pðbÞ ¼P

�pðbj�Þpð�Þ. From Eqs. (5) and (6) with the constraints
(7) and (8) we obtain

vð1� fÞðx� 1
2Þ ¼ 0; (10)

fð1� zÞ
�
y� cos2

’

2

�
¼ 0; (11)

zfþ vð1� fÞ � cos2� ¼ 0: (12)
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FIG. 2 (color online). Morphing behavior between particle
(� ¼ 0) and wave (� ¼ �=2).
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As � is arbitrary, we disregard the cases v ¼ 0, f ¼ 0,
implying cos2� ¼ 0 and f ¼ 1, z ¼ 1, giving cos2� ¼ 1.

Five of the remaining nontrivial solutions have either
x ¼ 1

2 or y ¼ cos2 ’
2 (or both). The solution x ¼ 1

2 means

that waves in open interferometers have a particle statis-
tics, pðajb ¼ 0; � ¼ wÞ ¼ ð12; 12Þ. The second solution y ¼
cos2 ’

2 implies that particles in closed interferometers be-

have like waves, pðajb ¼ 1; � ¼ pÞ ¼ ðcos2’2; sin2’2Þ.
None of these solutions is acceptable, as particles and
waves show an inconsistent behavior: waves in open inter-
ferometers have particle statistics and particles in closed
interferometers show interference. The last solution is

v ¼ 0; z ¼ 1; f ¼ cos2�; (13)

with x, y undetermined. In other words, the source ran-
domly emits particles and waves with a distribution
pð�Þ ¼ ðcos2�; sin2�Þ identical to the probability distribu-
tion pðbÞ of the ancilla. Moreover, whenever the source
emits a particlelike photon the ancilla is found to be 0,
pðbj� ¼ pÞ ¼ ð1; 0Þ and the interferometer is open. On the
other hand, when it emits a wavelike photon the ancilla is
measured as 1, pðbj� ¼ wÞ ¼ ð0; 1Þ, so the interferometer
is closed. The hidden-variable � and the ancilla b are
perfectly correlated, pðbj�Þ ¼ ��p�b0 þ ��w�b1.

The paradox is now revealed: although the hidden vari-
able completely determines the value of the ancilla, the
probability distribution pð�Þ is identical to pðbÞ which is
set by the experimenter preparing �. To explain this, we
need to enlarge the HV theory in order to include also the
setting �, resulting in a second-order HV theory (deemed
unacceptable by Bell [14]). This invites an induction ad
infinitum procedure, in which we introduce a second (and
third, etc.) ancilla in order to offset the causality between
the source and the preparation of the lower-order ancilla. In
this scenario we have a delayed-delayed-. . .-choice experi-
ment all the way down. Occam’s razor compels us to cut
this infinite chain to the first link. In conclusion, if the
hidden-variable � completely determines b, then � itself
cannot be determined by the setting � preparing b.

To summarize, we have shown that any HV theory that
reproduces the QM statistics pða; bÞ and agrees with natu-
ral definitions of particle and wave behavior, either as-
sumes wave-particle duality (which was supposed to
abolish in the first place) or introduces higher-order HV
theories.

The definition of particle (wave) used above is based on
the observed statistics in a open (closed) interferometer (7)
and (8), as this is the only meaningful possibility in a
probabilistic theory as QM. As noted before, from a clas-
sical perspective there is still an ontological tension
between the observed interference and the detection of
individual photons, one by one, by clicks in the detectors.

In conclusion, we proposed and analyzed a quantum
version of Wheeler’s delayed-choice experiment. This
has several important consequences. First, the photon

shows a morphing behavior between particle and wave.
This further supports the conclusion that particle and wave
are not realistic properties but merely reflect how we look
at the photon; such behavior is a direct consequence of a
quantum beam splitter and cannot be revealed in a classical
setup. Second, the classical choice particle vs wave can be
made after the photon has been already detected, by corre-
lating the photon data with the measured value of the
ancilla (postselection). We have shown that complemen-
tary phenomena can be observed with a single experimen-
tal setup, provided that a component of the apparatus is a
quantum device in a superposition state. Our result sug-
gests a reinterpretation of the complementarity principle—
instead of complementarity of experimental setups (Bohr’s
view) we have complementarity of experimental data. We
anticipate quantum controls will play an important role in
reassessing other experiments in foundations of quantum
mechanics, particularly Bell-inequality tests [15,16].
Discussing the delayed-choice experiment, Wheeler

concludes: ‘‘In this sense, we have a strange inversion of
the normal order of time. We, now, by moving the mirror in
or out have an unavoidable effect on what we have a right
to say about the already past history of that photon’’ [5].
We disagree with this interpretation. There is no inversion
of the normal order of time—in our case we measure the
photon before the ancilla deciding the experimental setup
(open or closed interferometer). It is only after we interpret
the photon data, by correlating them with the results of the
ancilla, that either a particlelike or wavelike behavior
emerges: behaviour is in the eye of the observer.
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Peruzzo, H. Price, S. Rebić, T. Rudolph, and J. Twamley
for comments and discussions. This work was supported by
the ARC Centre for Quantum Computer Technology and
EC Project QUANTIP 244026.

[1] N. Bohr, in Quantum Theory and Measurement, edited by
J. A. Wheeler and W.H. Zurek (Princeton University
Press, Princeton, NJ, 1984), pp. 9–49.

[2] P. Grangier, G. Roger, and A. Aspect, Europhys. Lett. 1,
173 (1986).

[3] G. Greenstein and A.G. Zajonc, The Quantum Challenge:
Modern Research on the Foundations of Quantum
Mechanics (Jones and Bartlett, Boston, 1997), Chap. 2.

[4] J. A. Wheeler, in Mathematical Foundations of Quantum
Mechanics, edited by A. R. Marlow (Academic, New
York, 1978), pp. 9–48.

[5] J. A. Wheeler, in Quantum Theory and Measurement,
edited by J. A. Wheeler and W.H. Zurek (Princeton
University Press, Princeton, NJ, 1984), pp. 182–213.

[6] A. J. Leggett, in Compendium of Quantum Physics, edited
by D. Greenberger, K. Hentschel, and F. Weinert
(Springer, Berlin, 2009), pp. 161–166.

[7] B.-G. Englert, Phys. Rev. Lett. 77, 2154 (1996).
[8] V. Jacques et al., Science 315, 966 (2007).

PRL 107, 230406 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

2 DECEMBER 2011

230406-4

http://dx.doi.org/10.1209/0295-5075/1/4/004
http://dx.doi.org/10.1209/0295-5075/1/4/004
http://dx.doi.org/10.1103/PhysRevLett.77.2154
http://dx.doi.org/10.1126/science.1136303


[9] W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester,
Phys. Rev. Lett. 91, 130401 (2003); D. Kleckner et al.,
New J. Phys. 10, 095020 (2008); J. Eisert et al., Phys. Rev.
Lett. 93, 190402 (2004); A. Bassi, E. Ippoliti, and S. L.
Adler, Phys. Rev. Lett. 94, 030401 (2005); T. Rocheleau
et al., Nature (London) 463, 72 (2010).

[10] A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, Phys. Rev.
Lett. 74, 4083 (1995).

[11] M.A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, U.K., 2000).

[12] Y.-H. Kim et al., Phys. Rev. Lett. 84, 1 (2000); T. J.
Herzog et al., Phys. Rev. Lett. 75, 3034 (1995).

[13] A. Brandenburger and N. Yanofsky, J. Phys. A 41, 425302
(2008); B. J. Hiley, in Compendium of Quantum Physics,
edited by D. Greenberger, K. Hentschel, and F. Weinert
(Springer, Berlin, 2009), pp. 284–287.

[14] J. S. Bell, Speakable and Unspeakable in Quantum
Mechanics (Cambridge University Press, Cambridge,
1987), p. 154.

[15] J. S. Bell, Physics 1, 195 (1964); J. F. Clauser, M.A.
Horne, A. Shimony, and R.A. Holt, Phys. Rev. Lett. 23,
880 (1969); A. Peres, Found. Phys. 29, 589 (1999).

[16] A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49,
1804 (1982); M.D. Reid et al., Rev. Mod. Phys. 81, 1727
(2009).

PRL 107, 230406 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

2 DECEMBER 2011

230406-5

http://dx.doi.org/10.1103/PhysRevLett.91.130401
http://dx.doi.org/10.1088/1367-2630/10/9/095020
http://dx.doi.org/10.1103/PhysRevLett.93.190402
http://dx.doi.org/10.1103/PhysRevLett.93.190402
http://dx.doi.org/10.1103/PhysRevLett.94.030401
http://dx.doi.org/10.1038/nature08681
http://dx.doi.org/10.1103/PhysRevLett.74.4083
http://dx.doi.org/10.1103/PhysRevLett.74.4083
http://dx.doi.org/10.1103/PhysRevLett.84.1
http://dx.doi.org/10.1103/PhysRevLett.75.3034
http://dx.doi.org/10.1088/1751-8113/41/42/425302
http://dx.doi.org/10.1088/1751-8113/41/42/425302
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1023/A:1018816310000
http://dx.doi.org/10.1103/PhysRevLett.49.1804
http://dx.doi.org/10.1103/PhysRevLett.49.1804
http://dx.doi.org/10.1103/RevModPhys.81.1727
http://dx.doi.org/10.1103/RevModPhys.81.1727

