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We investigate local three-body correlations for bosonic particles in three dimensions and one

dimension as a function of the interaction strength. The three-body correlation function gð3Þ is determined

by measuring the three-body recombination rate in an ultracold gas of Cs atoms. In three dimensions, we

measure the dependence of gð3Þ on the gas parameter in a BEC, finding good agreement with the

theoretical prediction accounting for beyond-mean-field effects. In one dimension, we observe a reduction

of gð3Þ by several orders of magnitude upon increasing interactions from the weakly interacting BEC to the

strongly interacting Tonks-Girardeau regime, in good agreement with predictions from the Lieb-Liniger

model for all strengths of interaction.
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Correlation functions reflect the nonclassical nature of
quantum many-body systems. They may be used to char-
acterize the latter when quantities such as temperature,
density, dimensionality, and particle statistics are varied
in experiments. It is particularly instructive to monitor a
system’s correlation functions as the strength of particle
interactions is tuned from weak to strong. A paradigm is
given by an ensemble of bosons in one-dimensional (1D)
geometry with contact interactions [1]: For weak repulsive
interactions, in the zero-temperature limit, the system is a
quasicondensate with essentially flat particle correlation
functions in position space to all orders. For strong repul-
sive interactions, the bosons avoid each other, leading to
loss of coherence and strong increase of local correlations.
In the context of ultracold atomic gases, with exquisite
control over temperature, density, and dimensionality [2],
tuning of interactions is enabled by Feshbach resonances
[3]. Local two- and three-body correlations in atomic
many-body systems can be probed, e.g., in measurements
of photoassociation rates [4] and of three-body recombi-
nation processes [5,6], respectively. Nonlocal two-body
correlations for atomic matter waves have been measured
in atom counting [7–10], noise-correlation [11–13], and
in situ imaging [14] experiments. Recently, also nonlocal
three-body correlations have become accessible in experi-
ments [15,16].

Recombination processes are sensitive to the properties
of the many-body wave function at short distances. In
particular, the process of three-body recombination, in
which three particles collide inelastically to form a dimer,
is directly connected to the local three-particle correlation

function gð3Þ � hĉ yðxÞ3 ĉ ðxÞ3i=n3, which compares the
probabilities of having three particles at the same position

for a correlated and an uncorrelated system. Here, ĉ y

and ĉ are atomic field operators and n is the density.

The function gð3Þ depends strongly on quantum statistics
[5,16] and temperature T [17–19]. For example, in 3D

geometry, statistics change the value of gð3Þ from zero for
identical fermions to one for noninteracting classical par-
ticles and to six for thermal (noncondensed) bosons. For
noninteracting bosons statistical bunching is suppressed in

a Bose-Einstein condensate (BEC), for which gð3Þ ¼ 1. In

addition, interactions also have a pronounced effect on gð3Þ:
In a 3D BEC, quantum depletion due to quantum fluctua-
tions reduces the condensate fraction by increasing the
number of occupied single-particle modes. In this case,
beyond-mean-field calculations [20] predict an increase of

gð3Þ proportional to the square root of the gas parameter

ðna33DÞ1=2, where a3D is the 3D s-wave scattering length.

This increase of gð3Þ has never been seen experimentally
and is in stark contrast to the behavior of 1D systems. In 1D
geometry, bosons with repulsive interactions minimize
their interaction energy by avoiding spatial overlap. For
very strong repulsive interactions in the Tonks-Girardeau

(TG) limit [1,21–24] a strong reduction of gð3Þ with a ��6

scaling is predicted [25]. Here, � is the dimensionless
Lieb-Liniger parameter, which characterizes interactions

in a homogeneous 1D system [1,26]. Recently, gð3Þ has
been calculated all the way from the weakly to the strongly
interacting 1D regime for T ¼ 0 [27,28] and also for T � 0
[18,19]. Experimentally, Laburthe Tolra et al. [6] have

observed a reduction of gð3Þ by a factor of about 7(5) for
a weakly interacting gas of Rb atoms with � ¼ 0:45.

In this work we experimentally determine gð3Þ in 3D and
in 1D geometry using a trapped ultracold gas of Cs atoms
with tunable (repulsive) interactions. For a BEC in 3D

geometry we find clear evidence for an increase of gð3Þ
with increasing interaction strength, in good agreement
with the prediction of Ref. [20]. In 1D, for which we can
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tune � from zero to above 100 [24], we determine gð3Þ in
the crossover regime from weak (1D BEC regime) to
strong interactions (TG regime). Here our data agree well
with the prediction of Ref. [27]. For strong interactions in

the TG regime, our measurements show that gð3Þ is sup-
pressed by at least 3 orders of magnitude. For high den-
sities and strong interactions, we observe a rather sudden
increase of three-body losses after long hold times in the

trap. Understanding the behavior of gð3Þ at short and long
times is an important step towards understanding integra-
bility and thermalization in 1D systems [29,30].

A three-body loss process [3,31] consists of the collision
of three particles, the formation of a dimer, and the release
of the dimer’s binding energy typically sufficient to allow
both, the dimer and the remaining particle, to escape from
the trap. The loss, assuming negligible one- and two-body

loss, is modeled by the rate equation _n ¼ ��Kð3Þgð3Þn3.
Here, we have explicitly split the loss rate coefficient

�Kð3Þgð3Þ into its three contributions. The parameter � ¼
3 describes a situation where exactly three particles are lost
in each recombination event. In principle, secondary losses
[32] could modify its value. However, in the following we

will be interested in relative measurements of �Kð3Þgð3Þ,
which are only weakly dependent on the precise value of �
[26], allowing us to neglect a possible deviation of � from

the value of 3. The parameter Kð3Þ contains the effect of
few-body physics on the loss process [3]. It depends on the
probability of dimer formation (a process that can be
strongly enhanced near Efimov resonances [33]) and gen-
erally varies strongly with a3D [31,34–37]. For a3D much

larger than the range of the scattering potential, Kð3Þ shows
a generic a43D scaling. Contributions of many-body physics

are contained in the three-particle distribution function

gð3Þn3. In what follows, we aim to measure gð3Þ as a
function of a3D both in 3D and 1D geometry.

We determine Kð3Þgð3Þ from measurements of the decay
of the total number of atoms NðtÞ in our trap [5,37], which

obeys the loss equation _N ¼ �3Kð3Þgð3Þ
R
n3ðrÞd3r.

Figures 1(a) and 2(c) show typical atom number measure-
ments for 3D and 1D geometry. The data in 3D geometry is
well fitted by solutions to the loss equation. The determi-

nation of Kð3Þgð3Þ depends critically on an exact knowledge
of the atomic density profile nðrÞ. In particular, particle
loss and loss-induced heating of the sample [37] can mod-
ify the density profile in a nontrivial way. Also, on long
time scales evaporative losses might start to play a role. To
avoid these complications we restrict ourselves to short
time intervals, during which not more than 15% of the
atoms are lost, and we determine the slope _Nð0Þ from a
linear fit to the data. We determine

R
n3ðrÞd3r from a

measurement of the total atom number N and the trap
frequencies !x;y;z using interaction dependent models for

nðrÞ [26]. We find that the linear approximation under-

estimates Kð3Þgð3Þ by approximately 12%; however, the

data analysis is greatly simplified, especially in 1D.

Finally, a comparative measurement of Kð3Þgð3Þ allows us
to eliminate Kð3Þ, as explained below, and to determine gð3Þ
in 3D and 1D geometry.

Correlation function in 3D.—We measure Kð3Þgð3Þ for
both a noncondensed thermal sample and a BEC as a
function of a3D. For the thermal sample we start with
typically 3:5� 105 Cs atoms at a temperature of T �
200 nK. The peak density is about n0 ¼ 1� 1014 cm�3.
In the BEC [37,38] we have about 9� 104 Cs atoms
without any detectable noncondensed fraction at about
n0 ¼ 5� 1013 cm�3. We tune a3D in the range from 50
a0 to 800 a0 by means of a broad magnetic Feshbach
resonance [37,39] (a0 is Bohr’s radius). The magnetic field
gradient needed to levitate the atoms against gravity [37]
introduces a slight (less than 5 a0) variation of a3D across
the samples. We determine N by means of absorption
imaging after a variable hold time t and 50 ms of expansion
in the presence of the levitation field. We note that we do
not observe the appearance of any noncondensed fraction
in all measurements using the BEC. Figure 1(b) displays

the ratio Kð3Þ
th g

ð3Þ
th =ðKð3Þ

BECg
ð3Þ
BECÞ ¼ gð3Þth =g

ð3Þ
BEC determined

from the thermal sample and the BEC as a function of
a3D. Here we have made the reasonable assumption that

Kð3Þ is independent of the system’s phase in 3D geometry,

i.e. Kð3Þ
th ¼ Kð3Þ

BEC. Our measurement shows that the ratio

gð3Þth =g
ð3Þ
BEC attains the expected value of 6 for weak

FIG. 1 (color online). (a) Relative atom number NðtÞ=Nð0Þ vs
hold time t in 3D geometry: BEC (squares and circles) and
thermal gas (diamonds) for a3D ¼ 101ð2Þa0, 386ð3Þa0, and
386ð3Þa0, respectively. The dashed lines are fits to the data based
on the loss equation (see text). The solid lines are linear fits that
include the data from 100% to 85%. (b) The ratio of correlation

functions gð3Þth =g
ð3Þ
BEC as a function of a3D (experimental data:

circles; prediction [20]: squares). All error bars reflect the 1�
statistical uncertainty.
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interactions [5], but then exhibits a pronounced decrease as
a3D is increased. For comparison, we plot the prediction of
Ref. [20]

gð3Þth =g
ð3Þ
BEC ¼ 6=

�
1þ 64ffiffiffiffi

�
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n0a

3
3D

q �
: (1)

We note that the density n0 enters into this equation as a
measured quantity. In general, we find good agreement
between the experimental and the theoretical result, estab-
lishing our measurement as a clear demonstration of be-

yond mean-field effects on gð3Þ in 3D bosonic quantum
gases.

Correlation function in 1D.—Figure 2(a) illustrates our
experimental setup to generate an array of 1D systems. We
load a BEC of typically 8� 104 atoms within 400 ms into
approximately 5000 vertically (z direction) oriented tubes
that are formed by two horizontally propagating, retro-
reflected lattice laser beams. Each tube with index (i, j)
in the x-y plane has a transversal trapping frequency of
!? ¼ 2�� 12:2ð5Þ kHz and an aspect ratio !?=!z of
approximately 800. The transversal motion of the atoms in
the tubes is effectively frozen out as kinetic and interaction
energy are much smaller than @!?. We adjust a3D in
100 ms to its final value. After time twe turn off the lattice
potential and determine the total atom number NðtÞ by
absorption imaging in a time-of-flight measurement.

In order to determine gð3Þ1D we calculate the ratio

Kð3Þ
1Dg

ð3Þ
1D=ðKð3Þ

3Dg
ð3Þ
3DÞ ¼ gð3Þ1D=g

ð3Þ
3D. Here, it is not obvious

that few-body physics is not affected by the confinement

and that hence Kð3Þ
1D and Kð3Þ

3D cancel each other.

Nevertheless, it is reasonable to assume that Kð3Þ is not
significantly changed by the confinement as long as the

confinement length a? ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðm!?Þ

p
is larger than the

extent of the dimer produced in the recombination event
and the range of the scattering process, which are both of
order of a3D. Here, m is the atom mass. We choose a
moderately deep lattice potential with a? � 1500a0 and
restrict a3D to a3D & 800a0. In particular, we avoid the
confinement-induced resonance condition a3D � a?
[24,40].

The main difficulty in the determination of Kð3Þ
1Dg

ð3Þ
1D

comes from the fact that the initial atom number of the
tubes varies across the lattice as a result of the harmonic
confinement. We choose to always load the lattice in a
regime of weak repulsive interactions such that almost all
1D samples are initially in the 1D Thomas-Fermi (TF)
regime [41]. The local chemical potentials �i;j, the total

atom number N, and the chemical potential � are then
unambiguously related, and we can directly calculate the
initial occupation number Ni;j for each tube (i, j) [[26] and

Fig. 2(b)]. The variation in Ni;j results in a considerable

variation in the type of density profile for each of the 1D
systems after the strength of interactions is increased to the
desired value: Some tubes remain in the 1D TF regime,
while others are now in the TG regime. For tubes that are in
the weakly interacting regime we determine the 1D density
n1D numerically by solving the 1D Gross-Pitaevskii equa-
tion. For the TG regime the density profiles are determined
following Ref. [41]. In general, we find good agreement
when we compare the numerical results to integrated den-
sity distributions from in situ absorption images. For the
interaction parameter � we take a mean value that is
calculated as an average over all local �i;j at the center

of each tube (i, j) weighted by Ni;j [26].

As before we determine Kð3Þ
1Dg

ð3Þ
1D from the initial slope of

the loss curve as shown in Fig. 2(c). In Fig. 3(a) we
compare the data that we obtain in 1D geometry to our

data forKð3Þ
3Dg

ð3Þ
3D for a 3D BEC as we vary a3D. We note that

the BEC data is in good agreement with previous three-
body loss data on thermal samples when one takes into
account the combinatorial factor 3! ¼ 6 [33,37]. In par-
ticular, the 3D data follows the universal scaling law

Kð3Þ � a43D for sufficiently large a3D [31,34–37]. We ex-

clude data points affected by the presence of a narrow
Feshbach resonance in the vicinity of a3D ¼ 150a0 [42].
Note that in the range from a3D � 10a0 to a3D � 850a0
three-body losses in 3D increase by nearly 3 orders of
magnitude. This behavior is in stark contrast to the mea-

surements in 1D. In 1D, we observe a reduction of Kð3Þgð3Þ

FIG. 2 (color online). (a) Sketch of the experimental setup: A
2D optical lattice traps atoms in an array of 1D tubes.
(b) Example of a computed atom number distribution Ni;j (see

text). (c) The relative atom number NðtÞ=Nð0Þ as a function of
time t in 1D geometry: squares and circles correspond to a3D ¼
23ð1Þa0 and 568ð3Þa0 with initial densities of 4:5 �m�1 and
1:7 �m�1 at the center of the center tube, respectively. The solid
lines are linear fits to the initial slopes. (d) The relative atom
number NðtÞ=Nð0Þ in 1D for fixed a3D ¼ 568ð3Þa0 and for
various values of � as the 1D density is changed: � ¼ 12
(circles), � ¼ 13 (triangles), and � ¼ 14 (squares). The solid
(dashed) lines are linear fits to the data points for short (large)
times to guide the eye.
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by approximately a factor of 2 upon increasing a3D over the
same range of values. In fact, for a3D � 200a0 our mea-

surement only gives an upper bound on Kð3Þ
1Dg

ð3Þ
1D as losses

become so small that we have difficulty in determining
_Nð0Þ in view of shot-to-shot particle number variations. We

note that not only the behavior of gð3Þ1D reduces the atom

loss, but also the fact that the density is decreased as
repulsive interactions are increased. In addition, on a
more technical side, our loading procedure for a3D �
200a0, aimed at avoiding the Feshbach resonance near
150a0, leads to a lower density. Also note that tunneling
between tubes (on a time scale of 1 s for the parameters of
our lattice) sets an upper bound for the time scale for which
the tubes can be considered to be independent and hence
fully in the 1D regime.

In Fig. 3(b) we plot Kð3Þ
1Dg

ð3Þ
1D=ðKð3Þ

3Dg
ð3Þ
3DÞ � gð3Þ1D as a func-

tion of �. A striking decrease by 3 orders of magnitude
from the value 1 at � � 0:03 to 10�3 at � � 50 can be

seen. We compare this result to the predictions based on
the Lieb-Liniger model of interacting bosons in 1D: In the
weakly interacting Gross-Pitaevskii regime (� � 1) the

Bogoliubov approach yields gð3Þð�Þ ’ 1� 6
ffiffiffiffi
�

p
=�,

while in the TG regime, � � 1, gð3Þ can be expressed
through derivatives of the three-body correlation function

of free fermions, giving gð3Þ ¼ 16�6=ð15�6Þ [25].
Cheianov et al. [27] have recently calculated numerically

gð3Þ for all strengths of interactions within the Lieb-Liniger
model, providing an interpolation between the weakly
and strongly interacting limits [red continuous line in
Fig. 3(b)]. We find very good agreement between the result
of our experiment and the theory that is valid for all
strengths of interactions. This is the central result of this
work.
Finally, for large values of a3D and n0, and for long hold

times in 1D geometry, we find a surprisingly sudden in-
crease of losses as shown in Fig. 2(d), accompanied by a
rapid increase for the expansion energy in the longitudinal
direction (data not shown). The onset of increased losses
shifts to later times with decreased density in the tubes,
i.e., increased �, and it is rather sensitive to the precise
value of �. We believe that the 1D tubes suffer from a
recombination-heating induced breakdown of correlations:
For sufficiently large values of a3D the binding energy of
the weakly bound dimer produced in the recombination
process becomes comparable to the trap depth (here
h� 45 kHz). This leads to a positive feedback cycle in
the many-body system in which three-body losses lead to

an increase of temperature [37] and thus of gð3Þ [17–19],
which in turn increases three-body losses.

In summary, we have measured the local value gð3Þ for
the three-particle correlation function for quantum degen-
erate gases in 3D and 1D. In 3D, increasing interactions

deplete the condensate and increase the value of gð3Þ in
accordance with beyond mean-field calculations. In 1D, we

observe a strong suppression for gð3Þ by 3 orders of mag-
nitude as the TG regime is entered. The accompanying
suppression of three-body losses is crucial to the study of
strongly interacting matter in and out of equilibrium in 1D
[24,29,30,43].
We thank R. Grimm for generous support. We gratefully

acknowledge funding by the Austrian Science Fund (FWF)
within Project No. I153-N16 and within the framework of
the European Science Foundation (ESF) EuroQUASAR
collective research project QuDeGPM. G. P. acknowledges
funding from the EU through NAME-QUAM and AQUTE.

*Present address: ISIS (UMR 7006) & IPCMS (UMR
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