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We study the low-temperature tunneling density of states of thin wires where superconductivity is

destroyed through quantum phase-slip proliferation. Although this regime is believed to behave as an

insulator, we show that for a large temperature range this phase is characterized by a conductivity falling

off at most linearly with temperature, and has a gapless excitation spectrum. This novel conducting

phase results from electron-electron interaction induced pair breaking. Also, it may help clarify the low-

temperature metallic features found in films and wires whose bulk realization is superconducting.
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Phase fluctuations of superconductors are responsible for
a broad range of fascinating phenomena. Their effect is par-
ticularly dramatic in narrow wires, where the proliferation
of phase slips induces a putative superconductor-insulator
transition [1–6]. Experiments probing this transition, how-
ever, challenge our understanding of the insulating phase, as
they exhibit a low-temperature metallic behavior in thin
wires where phase slips proliferate [7–9]. Reference [5]
discussed the phase-slip induced breakdown of supercon-
ductivity in a wire, speculating that a metallic phase arises.
Could the strong phase fluctuations induce a finite quasi-
particle (QP) density of states that maintains a finite
conductivity?

Gapless quasiparticles are well known to exist in
superconductors when time reversal symmetry is broken
[10–14]. Gapless superconductivity, however, also appears
due to proximity to metallic contacts where the order
parameter is nonuniform [15,16]. The pair breaking effect
occurs since the relative phase of the two electrons making
up a Cooper pair (CP) gets randomized by the perturbation.
This begs the question: can fluctuating electromagnetic
fields due to strong superconducting-phase fluctuations
and electron-electron interactions, which are manifestly
nonuniform and introduce dephasing in normal systems
[17], lead to the appearance of gapless superconductivity at
finite temperatures as well.

In this Letter we study the low-temperature tunneling
density of states (tDOS) of the phase-slip proliferated
regime. We argue that the scarcity of normal excitations
and the blocking of the CP conduction channel give rise to
strong dephasing, through electromagnetic field fluctua-
tions. This, in turn, randomizes the relative phase of the
two electrons in a CP, and therefore leads to local pair
breaking. From a self-consistent study of the tDOS, we find
that at a broad temperature regime [T < Tgap, where

Tgap�0:1Tc is defined by the requirement ���ðTgapÞ¼1,

� is the order parameter and �� is the dephasing time, see

Eq. (1)], no hard spectral gap exists. Furthermore, because
the conductivity is dominated by QP, it vanishes at most
linearly in temperature, as opposed to an exponen-
tially suppressed conductivity characteristic of a gapped
phase. Eventually, at very low temperatures, the QP are
localized and the metallic phase ceases to be valid. These
effects should be manifest in tunneling measurements of
wires with an increasing resistance upon cooling.
Our argument follows from the dependence of dephasing

on the dissipative response of diffusive electron systems.
For this purpose, it is insightful to interpret the response of
the wires we consider in terms of coexisting normal QP and
condensed CP. In the phase-slip proliferated regime, where
the normal resistance of a coherence-length segment obeys
R� * RQ ¼ h=4e2 � 6:4k�, the conductivity is domi-

nated by the normal QPs, as long as they remain diffusive.
Similarly to normal diffusive systems, electron-electron
interactions lead to the suppression of quantum interference
of these diffusive QP after a typical dephasing time ��.

Using the fluctuation-dissipation theorem the dephasing is
dictated by the electrical response of the system,�ðTÞ [18]:

��ðTÞ ¼
�
�ðTÞA
e2T

ffiffiffiffiffiffiffi
2D

p
�
2=3 ¼ �N�ðTÞ

�
�ðTÞ
�N

�
2=3

; (1)

where �N is the conductivity in the normal state, A is the
cross-section area of the wire, and D is the diffusion con-
stant. When the CP are formed but not condensed due to
quantum phase-slips proliferation, QP are expected to be
scarce, and therefore �ðTÞ<�N . This increases voltage
fluctuations and the dephasing rate.
An enhanced dephasing rate, however, may lead to the

breaking of CP, and therefore suppress the pairing gap.
Indeed, if we assume a hard gap, � in the excitation
spectrum we obtain a contradiction. If the QP density is

exponentially suppressed n� e��=T due to the pairing
gap, then the dephasing rate is exponentially enhanced. A
strong dephasing mechanism allows us to consider the
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effects of pairing on the tDOS perturbatively in the pa-
rameter ���ðTÞ � 1. Such a calculation yields a gapless

excitation spectrum that approaches the normal state tDOS
(see Fig. 2 and detailed calculation below), in clear contra-
diction to the assumption of a finite excitation gap. This
argument is valid at temperatures much lower than the
mean-field Tc yet above the localization limit of the QP.
Note that thermal superconducting-phase fluctuations may
also contribute to dephasing. These contributions are
small, however, as QP’s dominate transport in this regime.

Before we discuss the regime of interest, we first sum-
marize the known different temperature regimes of a
strongly fluctuating superconducting wire, and their trans-
port signatures. A qualitative phase diagram is depicted
in Fig. 1. Above Tc [19], thermal pairing fluctuations
and interference effects (Aslamasov-Larkin and Maki-
Tompson corrections), reduce the resistance. The forma-
tion of incoherent CP, however, tends to enhance the

resistance. Together these reduce the resistance RðTÞ ¼
RW � h

e2
½ðT � TcÞ=Tc�3=2, where RW is the wires’ nor-

mal state resistance, and ðT � TcÞ=Tc � 1. Near Tc [jT �
Tcj=Tc � Gi where Gi ¼ ð7�ð3Þ

4�2

R�

RQ
Þ3=2 is the Ginzburg

Levanyuk number] strong fluctuations control the resist-
ance. At temperatures below Tc, a CP condensate forms,
and shunts the normal excitations. Here thermally

activated phase slippage (TAPS) dominates, and the

resistance follows an activation behavior, RLAMHðTÞ ¼
�@2�
2e2kBT

e��F=kBT [20–22].

At low temperatures T < TQ, where TQ is defined as

�ðTQÞ ¼ TQ, quantum phase slips (QPS) dominate the

resistance of the superfluid [5]. The behavior of super-
conducting wires in this regime is dichotomized by the
Luttinger parameter K, which depends on R�, see Eq. (5)

below [1–6]. In wires with R� < RQ, quantum phase slips

are irrelevant and their resistance follows a power law
temperature dependence. In this manuscript we focus on
wires with R�*RQ. At intermediate temperatures 1=�KT<
T < TQ, QPS are scarce but their density increases with

reducing temperature, resulting in a power law temperature
dependence, RðTÞ � RWðT=�Þ2K�3. Here ��1

KT is the typi-
cal temperature at which phase slips proliferate, leading to
a large phase-slip fugacity: �ð1=�KTÞ ¼ 1. At lower tem-
perature, T < ��1

KT, QPS proliferate and the conductivity is
dominated by diffusive QP.
In the presence of a hard gap in the excitation spec-

trum the number of normal QP is exponentially small

nqp � e��=T , leading to an exponentially large resistance.

However, the following remarkable circumstances may
lead to a metallic behavior characterized by a power law
resistance. The reduced density of normal excitation, re-
sulting in the formation of CP, increases the Nyquist ther-
mal fluctuations of the potential. This finite temperature
noise acts as a phase breaker for the superfluid, and con-
sequently may lead to the vanishing of the gap in the
excitation spectrum, a situation known as gapless super-
conductivity. Unlike conventional superconductors, where
the superfluid shunts the normal fluid, however, the prolif-
eration of QPS blocks the superfluid channel and the
resistance is dominated by these normal QP giving rise to
a metallic behavior. The temperature at which the gap
vanishes, Tgap, can be estimated from ���ðTgapÞ ¼ 1.

First we use Eq. (1) which expresses �� in terms of the

dimensions of the wire and its diffusion constant, that
determine the localization length �loc ¼ A�0D, where �0

is the density of states. Next we assume the conductivity in

the hard gap phase follows �ðTÞ=�N ¼ e��=T , and then
we find Tgap � �=½lnð�loc=�Þ þ lnlnð�loc=�Þ�. Here the

dependence of Tgap on �loc is due to the dependence of

�� on �loc, see discussion above.

The gapless regime, T < Tgap, is the main focus of this

manuscript. In this regime, as we outline below, the resist-
ance of the wire follows a power law [23]

�ðTÞ=�N � ðT=�Þ�: (2)

Determining the power � requires summing the pertur-
bation series in ��� to infinite order. Nevertheless, from

Eq. (1) [�ðTÞ � �3=2� T] together with the fact that �� must

FIG. 1 (color online). A qualitative phase diagram of a fluctu-
ating wire, whose normal resistance is RW , as a function of
temperature. This manuscript focuses on Tloc < T < Tgap,

marked by an arrow, where we find that the normal fluid is
gapless due to strong phase fluctuation and the resistance scales
as a power law of the temperature, see discussion before Eq. (2).
Here Tc is the mean-field transition temperature [19] and TQ is

the temperature at which quantum phase slips (QPS) dominate
the response of the system. At ��1

KT QPS proliferate, blocking the

conductance of the superfluid channel. At Tloc in addition to the
CP, QP are localized at lengths larger than �loc, and conductance
is controlled by their thermally activated hoping with a typical
gap Eg. For a summary of all crossover temperature, and typical

numerical values see Table I. For large R� the gap regime

disappears. Here K is the Luttinger parameter, �F is defined
in [20], and Gi is the Ginzburg Levanyuk number. The figure is
not true to scale.
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diverge as T ! 0, we find that the conductivity must follow
a sublinear temperature dependence �ðTÞ=T!T!01,
corresponding to � � 1. We estimate � in two different
ways: from the leading order correction to the tDOS,
and from the leading order correction to the self-energy.
The former approximation gives �ðTÞ=�N ¼�ðTÞ=�0�
1�½���ðTÞ�2 [24,25]. Substituting the expression for the

dephasing time (1) and solving for the conductivity in the

limit �ðTÞ=�0�1, we obtain the power law �ðTÞ=�N�
ð �
�loc

T
�Þ. Alternatively, the leading order correction to the

self-energy, which is equivalent to a partial resummation of
the infinite series, gives rise to a sublinear temperature

dependence �ðTÞ=�N � ðT=�Þ2=5. A discussion of this
calculation and its validity appears at the end of the
manuscript.

The metallic behavior persists as long as the normal fluid
remains diffusive. This breaks down at low temperatures,
where the dephasing length exceeds the localization length
L�ðTlocÞ � �loc. We estimate Tloc by using the sublinear

temperature dependence of the conductivity �ðTÞ=�N �
ðT=�Þ2=5 in Eq. (1), and find Tloc ¼ �ð�=�locÞ4, which for
typical wires is well below Tgap. Table I lists the different

temperature regimes as well as their numerical values for
typical experiments.

The above argument shows that the assumption of
a finite dissipation mechanism in the low-temperature
phase of fluctuating superconducting wires holds self-
consistently. The finite conductivity derived from Eq. (1)
is due to diffusive QPs, whose interaction dynamics gives
rise to a fluctuating potential and hence dephasing. The
dephasing rate not only gives rise to a finite conductivity as
described above, but also causes a finite tDOS. These
effects can be probed in strongly fluctuating long super-
conducting wires whose resistance increases as the tem-
perature is reduced, and whose total capacitance is large
[26,27]. In this regime, the energy scale at which the tDOS
reaches its maximum value is 1=�� (see Fig. 2), which

according to these predictions should coincide with the
value inferred from an independent measurement of the
wire’s conductivity following Eq. (1).

Next, we prove the crucial point that if �� is indeed

small, the QP spectrum cannot be gapped. We later use
this calculation to estimate the emerging tDOS in the
gapless regime. We carry out a calculation of the tDOS
which is perturbative in ���. In the absence of a pair

breaking mechanism, the perturbative correction diverges,
marking the opening of a pairing gap. Conversely, in the
presence of strong dephasing, ��� � 1, the QP excita-

tion spectrum may be gapless. The tDOS is given by
�	 ¼ � 1

� ImGRðr; r; 	Þ, where GRðr; r; 	Þ is the retarded

Green’s function which can be expressed to second order
in the pairing amplitude: G0 þG0� �G0�G0h��yi. Here
G0ðp;!nÞ�1¼i!n��pþi=ð2�Þsgnð!nÞ, �G0ðp;!nÞ�1¼
i!nþ�pþi=ð2�Þsgnð!nÞ are the disorder averaged free

Green’s functions in the vicinity of the second order phase
transition, and � is the impurity ladder dressed vertex.

We define 
�ð	Þ ¼ �ð	Þ��0

�0
¼ � 1

� ImIRð	Þ, where IRð	Þ ¼
Iði!n ! 	þ i
Þ is the analytic continuation of

Ið!nÞ¼2�isgnð!nÞT
X
q;�

�ð!nð!nþ�ÞÞh��yiq;�
ðj2!nþ�jþDq2þ��1

� Þ2 : (3)

In order to describe correlations of the order para-
meter in a superconducting wire we examine its micro-
scopic action obtained from the BCS Hamiltonian by a
Hubbard-Stratonovich transformation followed by an ex-
pansion around the saddle point [28,29]. The low energy
excitations of the system are phase fluctuations whose
action follows:

S½�� ¼ K=2
Z

dxdyfð@x�Þ2 þ ð@y�Þ2=N?g; (4)

where y ¼ v��, N? ¼ p2
FA=�

2, and

TABLE I. A list of all crossover temperatures, their defining
relation, as well as their parametric and numerical values. For
the numerical estimates we have used ���ðTQÞ ¼ TQ ¼
0:9Tc, b ¼ 1, R� � 0:5RQ. In addition, as the localization length

satisfies R�loc
¼ 4RQ, we have �loc=� ¼ 8. We note that for these

choice of parameters, Tgap�KT > 1.

Determined from Parametric Numeric

TQ �ðTQÞ ¼ TQ 0:9Tc

��1
KT �ð�KTÞ ¼ 1 ��1

KT � �

ebjK�Kc j�1=2 0:2Tc

Tgap ���ðTgapÞ ¼ 1 Tgap � �

ln
�loc
� þlnln

�loc
�

0:3Tc

Tloc L�ðTlocÞ ¼ �loc Tloc � �ð�=�locÞ4 0:0002Tc

0 1 2

0.75

1

0

FIG. 2. The tDOS of a fluctuating superconductor given by
Eq. (3). Here T=� ¼ 0:1, and ��KT ¼ 2. Different curves are
plotted for different dephasing time with ��� ¼ 1, 0.5, 0.3

corresponding to black dark gray and light gray, respectively.
The tDOS approaches a constant value for short dephasing times.
We note that the initial suppression of the tDOS at 	 � 1=�KT is
a result of the quasiorder of the superconducting phase at times
shorter then the correlation time 1=�KT.
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K ¼ 4�0A�
2
0�

2
0

v�

� RQ

2R�

: (5)

The partition function of the superconducting wire
whose low energy excitations follow Eq. (4) has the
same form as a classical partition function of an anisotropic
two dimensional XY model. The system described by this
model undergoes a Kosterlitz Thouless phase transition
[30] between a quasiordered phase (superconductor) where
quantum topological excitations known as phase slip are
bound in pairs and a disordered phase where phase-slip
pairs unbind [5]. Correlations of the order parameter in the
disordered phase decay exponentially:

h�ðx; �Þ�yð0; 0Þi ¼ �2
0e

�x=�KTe��=�KT ; (6)

over a typical length �KT, and time �KT. This gives

h��yiq;� ¼ �2
0�KT�KT

ð1þ q2�2
KTÞð1þ�2�2KTÞ

: (7)

Using Eqs. (3) and (7) we calculate the corrections to the
tDOS in a fluctuating superconductor. The result is shown
in Fig. 2. We have assumed a proliferation of phase
slips which requires the following inequality to hold: T &
1=�KT & �. Here �KT is reduced by a factor 1=

ffiffiffiffiffiffiffi
N?

p
with

respect to the naively expected value �KT=v� [see Eq. (4)],

making the regime ��KT ¼ Oð1Þ, experimentally acces-
sible. The perturbative correction to the tDOS is small if
� & 1=��, which in general is not satisfied in experiments.

However, for illustrative purposes and to stay in the regime
where our approximation is justified, Fig. 2 shows the
tDOS for ��� ¼ 1, 0.5, 0.3, and the extension to the

regime 1=�� < � is discussed below. In Fig. 2 one sees

that the zero energy density of states decreases with in-
creasing ���. As �� grows with decreasing temperature,

we expect that �ð	Þ develops a pseudogap, consistent with
the power law temperature dependence of �.

One might question the consistency of our calculation in
the limit ��� � 1, because the gapless tDOS we find can

act as a shunt resistor, which suppresses quantum phase
fluctuations, and restores local phase coherence [1–3,31],
contrary to the assumed strongly fluctuating regime. This
discrepancy is resolved since the phase-fluctuating regime
(7) corresponds to a gapped kernel for the pairing field
[32]. Hence, while gapless Fermionic excitations may in-
troduce a dissipation term of the form Rsj�jj�j2 in the
action for the pairing field, the substantial mass term in the
action dictates the long time correlations rendering the
dissipation unimportant, and the system remains in the
strongly fluctuating phase. Indeed, in the small � limit,
the pairing-field action [32] with an Rs > 0 term coincides
with the Hertz-Millis action for the metallic phase of a
strongly fluctuating superconductor [33–35]. In addition,
the phase diagram of dissipatively shunted Josephson
junction chains also exhibits a disordered phase which is
insensitive to small dissipation [1–3,31].

Let us now describe how to estimate the emerging tDOS
and consequently the conductivity in the gapless regime,
beyond the perturbative limit. Note that while the pertur-
bative correction presented above is no longer small for a
long dephasing time ��� > 1, it does not diverge and

hence a calculation of the full density-of-states correction
is possible. Similarly to the case of pure Coulomb interac-
tion, �� is in principle due to higher order corrections in

the perturbation series in the interaction strength. As such a
calculation is beyond the scope of this Letter, we use the
dephasing rate obtained from the conductivity according to
Eq. (1) in Eq. (3). Although it cannot be trusted, calculating
the leading order to the self-energy may give additional
qualitative information about the tDOS in the regime
��� � 1, see details in the Supplemental Material [36].

This leads to a finite subgap density of states at low
but finite temperatures, which vanishes at T ! 0. In the

limit T�KT, T�� � 1 we find �ðTÞ=�0 � �ðTÞ=�0 �
1=ð���ðTÞÞ ¼ ½ð�=�locÞðT=�Þ�2=5, were the last equality

was obtained using (1) [24,25]. Similar models considering
the role of a fluctuating pair correlator in a ballistic system
in two dimensions revealed a QP peak in the spectral
function [37,38].
In conclusion, we studied the tDOS of a superconduct-

ing wire in the QPS proliferated regime. We found that in
the disordered phase, associated with QPS proliferation,
the conductivity has a sublinear temperature dependence,
and is dominated by QP with a substantial subgap excita-
tion spectrum. This novel metallic phase may be related to
the metallic behavior observed in low dimensional films
and wires whose bulk realization is a superconductor.
These predictions can be experimentally tested by tunnel-
ing measurements. In this regime, the energy scale at
which the tDOS is expected to reduce below its value in
the normal phase, �0 is 1=��, which according to these

predictions should coincide with the value inferred from an
independent measurement of the wire’s conductivity fol-
lowing Eq. (1).
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