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We consider an asymmetric 0-7 Josephson junction consisting of 0 and 7 regions of different lengths L
and L. As predicted earlier this system can be described by an effective sine-Gordon equation for the
spatially averaged phase ¢ so that the effective current-phase relation of this system includes a negative
second harmonic o« sin(2¢). If its amplitude is large enough, the ground state of the junction is doubly
degenerate iy = * ¢, where ¢ depends on the amplitudes of the first and second harmonics. We study the
behavior of such a junction in an applied magnetic field H and demonstrate that H induces an additional term
o« H cosy in the effective current-phase relation. This results in a nontrivial ground state tunable by mag-
netic field. The dependence of the critical current on H allows for revealing the ground state experimentally.
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Josephson junctions (JJs) with a phase shift of 7 in the
ground state [1] attracted a lot of interest in the recent years
[2-7]. These JJs can be used as on-chip phase batteries for
biasing various classical [8] and quantum [9] circuits. This
allows for removing external bias lines and reducing deco-
herence. Currently, it is possible to fabricate simulta-
neously both 0 and 7 JJs using various technologies such
as superconductor-ferromagnet heterostructures [10] or JJs
based on d-wave superconductors [11-13].

It would be remarkable to have a JJ (a phase battery)
providing an arbitrary phase shift ¢, rather than just O or
7. Long arrays of 0-7-0-7-... JJs with short segments
were suggested as systems, where the ¢ JJ can be realized
[14-16]. Each of the segments are assumed to have a
standard current-phase relation (CPR) j; = = j,sin¢.
The phase ¢ in these systems can be written as a sum of
two terms ¢(x) = ¢ + £(x) sinys, where  is a constant
spatially averaged phase and |£(x)| < 1 is alternating on a
scale of the order of the segment’s length. The effective
CPR then reads [14-16]

Js = Jjisin(if) + jo sin(24), )

where j, = {j.(x)) is the spatially averaged critical current
density and j, < 0 is the amplitude of the effective second
harmonic. We note that special stochastic distributions of
facets may also lead to j, > 0 [17]. The value of j, depends
on parameters of the junctions. For j, <—j, /2 the ground
state of the system is doubly degenerate with ¢y = * ¢,
where

@ = arccos[—j,/(2j»)] (2)
This ¢ JJ [16] is the generalization of a 77 JJ and can

provide an arbitrary phase bias 0<<¢ <. These JJs have
unusual physical properties [18], e.g., non quantized
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Josephson vortices that were predicted [14] and observed
experimentally [15].

The simplest system, which is suitable for the realization
of a “short” ¢ JJ, is an asymmetric (i.e., Loy # L) 0-7JJ
with relatively short segments of length Ly, L, =< A;, where
Ay = 1//], is the Josephson length. Such a system can be
considered as one period of an infinitely long 0-7-0-7- - - -
chain. The best method to reveal the ¢ JJ experimentally is
to include it in a superconducting loop (thus forming a
SQUID) and to measure the spontaneously generated flux.
Another option is to study these JJs in a magnetic field H.
It is worth mentioning that there is an apparent contra-
diction here. On one hand, the usual linear phase ansatz
¢(x) = Hx + ¢ in asymmetric 0-7r JJ results in a critical
current I.(H) with a cusplike minimum at H = 0, see
Eq. (11) in Ref. [11] as well as Refs. [19,20]. This I.(H)
should be mirror symmetric with respect to the /.. axis, i.e.,
I.(—H) = I.(+H). On the other hand, the presence of the
second harmonic in the CPR (1) and the linear phase ansatz
for ¢ leads to a Fraunhofer-like /.(H) with the maximum at
H = 0 [18]. Moreover, when [j,| > 0.5j, there are two
critical currents /.. (H), corresponding to depinning of the
phase from different potential wells, but both of the I... (H)
dependences have the main maximum at H = 0 [18].

In this paper we study the asymmetric O-7 JJ in a
magnetic field in detail. We demonstrate that the amplitude
of the second harmonic j, in Eq. (1) depends only on the JJ
parameters, while the magnetic field H induces an addi-
tional term « H cosi. Further, we predict the dependence
of I.(H) at small magnetic fields.

Consider an asymmetric JJ shown in Fig. 1. The depen-
dence j.(x) is given by

if —L,<x<0; (3a)
if0<x<L, (3b)

jc(x) = _jO’
jc(x) = +j0r
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FIG. 1 (color online). Geometry of the 0-7 JJ.

The behavior of the phase ¢(x) is defined by the static
sine-Gordon equation

¢"(x) = j.(x) sin[p(x)] = —, “4)

where the coordinate x and lengths L ,, are normalized in
the usual way to A; and y = j/j, is the normalized bias
current density. j.(x) below is also normalized to j,. Next,
we write [14]

Je) = (oll + gx)], (&)

where

1 Ly Lo— L
o) = fkﬁww=mii—ﬂ ©)

Ly+ L, J-L Ly+ L,

is the average value of the critical current density and

_ 2L, .

) = P e for x < 0; -
§ = 2Lz for x>0
80 = Lo—L,’ or x 'y

is the deviation from the average value ((g(x)) = 0).
Thus, we rewrite Eq. (4) in terms of g(x) and arrive to

¢" = (ol + g(x)]sing = —. ®)

In what follows we treat short JJs (L, L, < 1). Therefore,
the solution ¢(x) can be sought in the form [14]

(x) = ¢ + () sing, )

where i is a constant [21] and &(x) describes small varia-
tions of the phase around #, i.e., |£(x)| < 1, (£(x)) = 0.
Substituting the ansatz (9) into Eq. (8) and expanding to the
first order in &(x) we get

& singr — (jM1 + g1 + £(x) cosip]sing = —y.
(10)
Equation (10) has two types of terms: the constant ones and
varying ones. Note, that the term g(x)&(x) has both the
constant (average) part (g(x)&(x)) and the deviation from
the average g(x)&(x) — (g(x)&(x)). Thus, from Eq. (10) the
relation for the constant terms reads

y = (olsing + (g(x)&(x))sing cosgp]. (11

The equation for £(x), recalling definition (5), is

§" = je(x)cosp £(x) = (jollg(x) — (gé)cosyp],  (12)

It turns out that both terms = cos¢s have an extremely
weak influence on the results. Therefore, for the sake of
simplicity, we omit them right away to arrive to

&' = (jrg). (13)

Solutions of this equation include four constants to be
determined from the matching conditions at x = 0

and boundary conditions at x = —L_ and x = L
&n(=Ly)sing = h; &o(Lo) singr = h, 5)

where h =2H/H,., is the normalized applied mag-
netic field, H,; = ®y/(wA;A) is the penetration field
and A = 2A; is the effective magnetic thickness of the
JI. Thus, we arrive to the expression for &(x) and can
calculate

h

=I,+T,— 16
(gé) 0 " Sing (16)
where the coefficients
4 212 LyL
Fp=-—-—>527_. [,=—"2"7__ 17
0 31212 P Lo — L, 17

Thus, Eq. (11) gives the effective CPR of the JJ
r
v = <jc>|:sin¢p + I'yhcosy + 70 sin(Zz//)]. (18)

The result is remarkable—as in earlier works [14—16] one
gets the second harmonic sin(2¢) with the negative am-
plitude of I'y/2. In addition, the magnetic field results in a
I, h cos ¢y term which additionally modifies the CPR and is
tunable by magnetic field. Figure 2(a) shows the effective
CPRs y(i) of a 0-7 JJ for several different values of
magnetic field . At h = 0 we might have a doubly degen-
erate ground state iy = % ¢ which, upon application of #,
transforms into a single one.
The Josephson energy corresponding to CPR (18) is

U(y) = (jc>|:1 —cosyy + I')hsinyg + %sinﬂb]. (19)

The plots of U() for the same set of & values is shown in
Fig. 2(b). Following the evolution of the curves at different
h one can see how the doubly degenerate ground state
transforms into a single one. Moreover, one can see that
at nonzero h the potential energy U(y) lacks reflection
symmetry and therefore can be used to build Josephson
phase ratchets [22,23].

The effective CPR (18) at 2 = 0 allows to calculate the
domain of existence of nontrivial solutions, which is de-
fined as |I'y| > 1 [18]. This results in

[ 3 , 3
L, =Ly  Ly=Lyf——  (20)
4L +3 412 +3
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FIG. 2 (color online). (a) effective CPR () and (b) effective
Josephson energy U(i) of a 0-7r JJ with Ly = 1, L. = 0.9 for
several different values of magnetic field 4 given next to each
curve. The arrow in (b) points to a local energy minimum, which
appears at certain values of bias current.

Since we have made certain approximations, namely, used
Eq. (13) instead of Eq. (12), it is worth to compare the
domain (20) with the exact result [24], which reads
L, = arctan[tanh(L,)];
L, = arctan[tanh(L )],

(21a)
(21b)

for our case j = j7. Both boundaries, the exact one given
by Eq. (21) and the approximate one given by Eq. (20) are
shown in Fig. 3. It is seen that our approximation works
extremely well not only for small L, and L, but also in the
limits L, L, — oo, where it deviates from the asymptotic
value by only ~10%.

In the JJ with the CPR (18) and energy (19), one may
have several stable static solutions and several critical
(depinning) currents corresponding to the escape of the
phase from the relevant energy minimum. To find the
critical currents for a given magnetic field, we look for
extrema of the CPR (18) with respect to . We arrive to

cosyy — [yhsingy — Ty(2cos?y — 1) = 0. (22)

This problem can be reduced to a solution of a fourth order
polynomial, i.e., all solutions of Eq. (22) can be found
numerically. As a result we obtain up to four relevant roots
and up to four corresponding critical currents.

Several examples of y.(h) dependences are shown in
Fig. 4. One can see that for the parameter set (a), which
corresponds to a state deep in the ¢ region at &7 = 0, see

2.0 4
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FIG. 3 (color). The domain of existence of a ¢ state (2 = 0) on
the L, L, plane. The exact boundary (21) (continuous lines) and
our approximation (20) (dashed lines) agree very well. The ¢
domain has regions of different colors from green (approxima-
tion |£(x)siny| < 1 works well) to red (approximation is in-
valid). The boundaries correspond to | £, sing| = 0.1, 0.2, 0.4,
0.8. The dots indicate parameters used for discussion of Fig. 4.
Vertical and horizontal dash-dotted lines show asymptotic be-
havior of exact boundary (21).

Fig. 3, one observes a characteristic rotated diamondlike
shape with four critical currents in total for |2| < 0.6. The
two branches that meet at 4 = +0.6 (— 0.6) correspond to
the escape from the left (right) potential well in Fig. 2(b).
The upper (lower) branch corresponds to the escape in the
right (left) direction. At || = 0.6 the branches meet in-
dicating the disappearance of the corresponding local en-
ergy minimum. The two critical currents y.. (in each
direction) observed at 7 = 0 coincide with y. obtained
in Ref. [18]. One may be able to observe the lower one
experimentally in a system with low enough damping
using a special sweep sequence [18]. For some values of
h the smaller minimum can even be absent at y = 0 [see
the arrow Fig. 2(b)] and appear at larger |y| [the vertical
dotted line corresponding to 7 = 0.5 in Fig. 4(a)]. The
small energy minimum appears for 0.03 <y <0.06,
which also be seen in Fig. 2(b). Another distinct feature,
which might be measurable in experiment, is the shift of
the main minimum to 2 = *=0.11 in Fig. 4(a). This shift is
the evidence of a nontrivial phase state in the junction.
Finally, at large |/| the upper branches of y.(h) approach
the asymptotic lines

ye(h) = £(j)lh, (23)

which are also shown in Fig. 4. We remind that our analysis
is valid only for small values of || and does not reproduce
the global 7. (h) features, presented elsewhere.

When the 0-7r JJ gets more asymmetric, see Figs. 4(b)
and 4(c), the lower y.(h) diamond-shaped domain be-
comes thinner and finally collapses. The point of collapse
corresponds to the crossing of the ¢-domain boundary in
Fig. 3. Looking at y.(h) one can see that the main cusplike
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The critical current y.(h) for 0-7 JJs with different segment lengths. Dashed lines show the asymptotic

behavior (23) for large |h|. Gray (pink) solid lines show the results of direct numerical simulations.

minimum shifts with asymmetry which can be used to
extract the asymmetry from experimental data.

We also have performed numerical simulations of the
v.(h) dependence using STKJJ software [25]. The above
analytical results coincide with the results of direct numeri-
cal simulation, shown by pink (gray) in Fig. 4, with good
accuracy. This is especially so at 4 << 1 when the approxi-
mation |£(x) sing| < 1, used to derive (10), is valid.

To summarize, we have shown that the effective CPR
(18) includes the term « H cosis, which allows to tune the
ground state. Thus, our system is a hybrid between ¢ [16]
and ¢, [26] JJs introduced earlier. The corresponding
Josephson energy profile can be made asymmetric allow-
ing to build Josephson phase ratchets. We have clarified
how the I.(H) dependence of asymmetric 0-7r JJ looks like
for low magnetic field. It does have a minimum, but the
minimum is shifted to some *#h;, for positive and nega-
tive bias, respectively, so that the I.(H) curve is point
symmetric.
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