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The thermoelectric figure of merit (ZT) in narrow conduction bands of different material dimension-

alities is investigated for different carrier scattering models. When the bandwidth is zero, the transport

distribution function (TDF) is finite, not infinite as previously speculated by Mahan and Sofo [Proc. Natl.

Acad. Sci. U.S.A. 93, 7436 (1996)], even though the carrier density of states goes to infinity. Such a finite

TDF results in a zero electrical conductivity and thus a zero ZT. We point out that the optimal ZT cannot

be found in an extremely narrow conduction band. The existence of an optimal bandwidth for a maximal

ZT depends strongly on the scattering models and the dimensionality of the material. A nonzero optimal

bandwidth for maximizing ZT also depends on the lattice thermal conductivity. A larger maximum ZT can

be obtained for materials with a smaller lattice thermal conductivity.
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Recently, there has been an increasing interest in using
thermoelectrics (TE) for solar-thermal applications, waste
heat recovery, and thermal management of electronics
[1–3]. The efficiency of a solid-state TE device for power
generation and electronic refrigeration is determined by
the figure of merit (ZT) of the material [4]:

ZT ¼ �S2

�e þ �p

T; (1)

where � is the electrical conductivity, S is the Seebeck
coefficient, �e is the electronic thermal conductivity, �p is

the lattice thermal conductivity, and T is the absolute tem-
perature. Searching for high ZT materials is essential in TE
power generation and refrigeration. Oneway to increaseZT
is to reduce�pwithout significantly changing the electronic

transport properties [5–8]. Another way is to maximize the
power factor for a given �p through optimizing the elec-

tronic band structure of the material. The original theoreti-
cal work by Mahan and Sofo [9] showed that an electronic
structure with a delta-shaped transport distribution function
(TDF) leads to a maximum ZT. Many of the band structure
engineering works for TE materials over the past decade
have somewhat followed this guideline by introducing a
sharp density of states (DOS) [10–14], including the search
for rare-earth compounds and transition-metal compounds
[15–17], and introducing impurity levels in bulk semicon-
ductor materials [18] and the nanostructured materials with
miniband formation [1,19].

Although mathematically rigorous, Mahan and Sofo
also noted in their original paper [9] that the exact delta-
shaped TDF cannot be found in real materials due to the
energy-dependent relaxation time and carrier velocity. It is
therefore very meaningful to reinvestigate what is the best
electronic structure of materials to maximize ZT when the

scattering model of carriers is considered. In this Letter, we
study TE transport properties in a narrow conduction band
with a bandwidth on the order of kBT, where kB is the
Boltzmann constant, for different scattering models in
different dimensionalities of the material.
Without losing the generality, we start our study using

the nearest-neighbor tight-binding model in one-
dimensional (1D), two-dimensional (2D), and three-
dimensional (3D) systems with a lattice constant a. The
lattice points of these generalized systems could be quan-
tum dots (QDs), rare-earth atoms, or transition-metal
atoms. The quantum-confined electrons in QDs (or f elec-
trons in rare-earth elements, d electrons in transition-metal
elements) could transport between the nearest-neighbor
lattice points. Depending on the dimensionality, the dis-
persion relation E�ðkÞ for these quantum-confined carriers
can be written as

E1DðkÞ ¼ �2J1D coskxa; (2a)

E2DðkÞ ¼ �2J2Dðcoskxaþ coskyaÞ; (2b)

E3DðkÞ ¼ �2J3Dðcoskxaþ coskyaþ coskzaÞ; (2c)

where the subscript for the dimensionality � ¼ 1D, 2D,
and 3D and k ¼ ðkx; ky; kzÞ is the wave vector of a carrier.
Here, the bandwidths are W1D ¼ 4J1D, W2D ¼ 8J2D, and
W3D ¼ 12J3D, where J� is the coupling constant which is
usually on the order of a few meV. When the quantum-
confinement potential goes to infinity, both the coupling
constant and the bandwidth become zero for a fixed lattice
constant.
By solving the linearized Boltzmann equations within

the relaxation time approximation, the TE transport prop-
erties are related to the TDF ��ðEÞ as

PRL 107, 226601 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

25 NOVEMBER 2011

0031-9007=11=107(22)=226601(5) 226601-1 � 2011 American Physical Society

http://dx.doi.org/10.1073/pnas.93.15.7436
http://dx.doi.org/10.1073/pnas.93.15.7436
http://dx.doi.org/10.1103/PhysRevLett.107.226601


�� ¼ L�;0; S� ¼ L�;1

TL�;0

; ��;e ¼ 1

T

�
L�;2 �

L2
�;1

L�;0

�
; (3a)

L�;i ¼ e2�i
Z W�=2

�W�=2
dE��ðEÞðE��Þi

�
� @f0

@E

�
; (3b)

where i ¼ 0, 1, and 2; E is the energy of carriers; � is the

chemical potential; e is the carrier charge; and f0 ¼
½eðE��Þ=kBT þ 1��1 is the Fermi-Dirac distribution.
��ðEÞ is related to the band structure and the scattering
model as [9]

��ðEÞ ¼ 2
X
k

�2
�;xðkÞ��ðkÞ�½E� E�ðkÞ�; (4)

where ��;xðkÞ ¼ 1
@

@E�ðkÞ
@kx

¼ 2J�a
@

sinðkxaÞ, ��ðkÞ is the

relaxation time of carriers, the factor 2 comes from the
spin degeneracy, and @ is the Planck constant.

We now consider the four different scattering models in
common use for the carrier relaxation time, where an
isotropic one, ��ðkÞ ¼ ��½E�ðkÞ�, is assumed. We note
that the results for other scattering models beyond these

four models, such as ��ðEÞ � E3=2, E1=2, and E�1=2, could
also be obtained similarly. The calculated TDFs��ðEÞ are
shown in Table I: (1) ��ðEÞ is inversely proportional to the
broadening of the energy �E, which is about the band-
width W� when �E � kBT, according to the uncertainty
principle; (2) constant relaxation time ��ðEÞ ¼ ��;0, which
is widely used for TE transport property calculations [20];
(3) ��ðEÞ is inversely proportional to the carrier DOS
��ðEÞ ¼ C�N

�1
� ðEÞ, where C� is a constant and the DOS

is defined as N�ðEÞ ¼ 2
P

k�½E� E�ðkÞ� / 1=W� (this
model has been often used for calculating the transport
properties of rare-earth compounds [9]); and (4) ��ðEÞ is
proportional to a constant carrier mean free path (MFP)
l�, i.e., ��ðEÞ ¼ l�=v�ðEÞ, which is widely used in
narrow band conduction calculations [21,22]. Here,
��ðEÞ ¼ ��½E�ðkÞ� ¼ 1

@
jrkE�ðkÞj �W�. Detailed deri-

vations can be checked in the Supplemental Material [23].

Let us look at the case for an extremely narrow band first.
When W� ! 0, the DOS is infinite, since N�ðEÞ � 1=W�.
However, the TDF ��ðEÞ in Table I is always finite when
we consider different carrier scattering possibilities, even
though the DOS is infinite. This is very different from the
Mahan-Sofo hypothesis [9] which assumes an infinite delta-
shaped TDF. Such an infinite delta-shaped TDF can never
hold in nature, since it requires ��ðEÞ � 1=W2

� [24],
which cannot be found with known scattering models.
Mathematically, for finite ��ðEÞ, all the transport coeffi-
cientsLimW�!0L�;i in Eq. (3) must go to zero, which results

in ZT� ¼ 0. Only infinite ��ðEÞ can lead to nonzero
LimW�!0L�;i because the integral limit in Eq. (3b) is from

�W�=2 toW�=2. In short, the TE power factor and ZT for
an extremely narrow band are zero due to the finite TDF
when the scattering models are considered explicitly rather
than being optimized by a speculated infinite TDF [9].
After substituting the TDF ��ðEÞ shown in Table I into

Eq. (3), the ZT expression in Eq. (1) can be rewritten as

ZT� ¼ P2
�;1=P�;0

P�;2 � P2
�;1=P�;0 þ ��

; (5)

where the dimensionless integrals P�;i and the dimension-

less factors �� strongly depend on the scattering models.
��, which is proportional to �p, is listed in Table II. P�;i

can be written out depending on the scattering models.

P�;i ¼
Rw�=2
�w�=2

dxI1=2� ð	�ÞsðxÞðx� bÞi for the uncertainty

principle and the constant relaxation time models, P�;i ¼Rw�=2
�w�=2

dxI1=2� ð	�Þ=I�1=2
� ð	�ÞsðxÞðx� bÞi for � / DOS�1,

and P�;i ¼
Rw�=2
�w�=2

dxI0�ð	�ÞsðxÞðx� bÞi for the con-

stant carrier MFP model. We have rescaled all the
energy-related variables by kBT for the above expressions
with E ¼ xkBT, W� ¼ w�kBT, 	� ¼ x=w�, � ¼ bkBT,

and sðxÞ ¼ ex�b

ðex�bþ1Þ2 .
Physically, large ZT can be obtained with a small ��,

i.e., a low �p. This is consistent with the efforts in the TE

community trying to reduce �p through alloying and nano-

TABLE I. TDF for the four scattering models: uncertainty principle; constant relaxation time; relaxation time inversely proportional
to the DOS; and constant carrier MFP, where 	� ¼ E=W�.

Scattering Model ��ðEÞ �1DðEÞ �2DðEÞ �3DðEÞ
Uncertainty principle @ =W�

a

@
I1=21D ð	1DÞ 1

4@
I1=22D ð	2DÞ 1

12@a
I1=23D ð	3DÞ

Constant � ��;0
W1D�1D;0a

@
2

I1=21D ð	1DÞ W2D�2D;0
4@2

I1=22D ð	2DÞ W3D�3D;0
12@2a

I1=23D ð	3DÞ

� / DOS�1 C�N
�1
� ðEÞ C1D

W2
1Da

2

4@2
I1=21D ð	1DÞ
I�1=2
1D ð	1DÞ

C2D

W2
2Da

2

16@2
I1=22D ð	2DÞ
I�1=2
2D ð	2DÞ

C3D

W2
3Da

2

36@2
I1=23D ð	3DÞ
I�1=2
3D ð	3DÞ

Constant MFP l�=��ðEÞ 2l1D
@

I01Dð	1DÞ
l2Dffiffiffi
2

p
@a

I02Dð	2DÞ
l3D

2
ffiffiffi
3

p
@a2

I03Dð	3DÞ
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structuring [1,7,8]. We first calculate the ZT with the
constant carrier MFP scattering model. In our calculation,
we make some simplifications to generalize the dimen-
sionless factor �� in order to compare ZT’s between 1D,
2D, and 3D systems. We assume all the carrier MFPs are
the same, i.e., l1D ¼ l2D ¼ l3D ¼ l0 and �p;1D=a ¼
�p;2D ¼ �p;3Da ¼ G, where G is the thermal conductance

across each lattice point. Then, �1D ¼ �0=2, �2D ¼ ffiffiffi
2

p
�0,

and �3D ¼ 2
ffiffiffi
3

p
�0, where �0 ¼ @aG

l0k
2
BT
. We estimate that the

value of �0 should be �0:01–1 at room temperature by
using the typical values of a (� 0:5 nm for d or f elec-
trons, �1–5 nm for QDs), l0 (�10 nm), and �p

(0:2–3 W=mK [25]).
Figures 1(a)–1(c) show the dependence of ZT� on the

chemical potential ��W�=2, where we choose the upper
band edge (W�=2) as a reference point, and the bandwidth
W�, when �0 ¼ 0:06 for the 1D, 2D, and 3D systems. It

should be pointed out that our model is valid only for
narrow band conduction when the bandwidth is on the
order of several kBT. Therefore, we do not present the
data for large bandwidths over 10kBT, since the results
would then be inaccurate. As expected, when the band-
width W� ! 0, ZT� goes to zero due to the finite TDF
discussed above. In the 1D system, no obvious optimal
point but an optimal ridge is found to maximize ZT1D to be
6.4 when ��W1D � 2kBT and W1D > 2:4kBT. This is
due to an energy-independent TDF �1D ¼ 2l0=
@. In
this case, only the carriers which are close to the upper
band edge (close to the chemical potential) contribute to
the electronic transport. When the bandwidth increases, the
contribution from this part changes very little for the
energy-independent TDF and the carriers close to the lower
band edge do not contribute to the transport. It is very
different in the 2D and 3D systems, since the TDFs are
energy-dependent. The maximum ZT2D in Fig. 1(b) is

TABLE II. Dimensionless parameters �� for different scattering models.

Scattering Model �1D �2D �3D

Uncertainty principle
@kp;1D

ak2BT

4@kp;2D

k2BT

12@akp;3D

k2BT

Constant �
@
2kp;1D

W1D�1D;0ak
2
BT

4@2kp;2D

W2D�2D;0k
2
BT

12@2akp;3D

W3D�3D;0k
2
BT

� / DOS�1
4@2kp;1D

C1DW
2
1Da

2k2BT

16@2kp;2D

C2DW
2
2Da

2k2BT

36@2kp;3D

C3DW
2
3Da

2k2BT

Constant MFP
@kp;1D

2l1Dk
2
BT

ffiffiffi
2

p
@akp;2D

l2Dk
2
BT

2
ffiffiffi
3

p
@a2kp;3D

l3Dk
2
BT

FIG. 1 (color online). ZT plotted as functions of the chemical potential with respect to the upper band edge ��W�=2, and of the
bandwidth W� in (a) the 1D system when �0 ¼ 0:06, (b) the 2D system when �0 ¼ 0:06, (c) the 3D system when �0 ¼ 0:06, and
(d) the 3D system when �0 ¼ 0:1.
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found to be 3.5, with ��W2D=2� 1:5kBT and the band-
width W2D � 3:5kBT in the 2D system, and the maximum
ZT3D is found to be 2.3, with ��W3D=2� kBT and the
bandwidth W3D � 4:5kBT in the 3D system. We find that
the optimal bandwidth should be smaller for the lower-
dimensional materials and the maximum ZT is higher
when both the carrier MFP and the thermal conductance
G are assumed to be constants in different dimensional-
ities. We also compare the ZT3D in the 3D system for
different �0 values in Figs. 1(c) and 1(d). We find that
the maximum ZT3D decreases from 2.4 to 1.6 and the
corresponding optimal bandwidth shifts to a slightly higher
value when �0 changes from 0.06 to 0.1. From Figs. 1(c)
and 1(d), we can see that it is essential to minimize the
dimensionless factor �0, i.e., reduce �p, for high ZT3D,

even if the electronic band structure is optimized. Now, if
we choose �p;3D ¼ 0:2 W=mK, which is a rather small

value for �p in semiconductors [25], one needs a2=l0 ¼
0:16 nm at room temperature to make �0 ¼ 0:06. If we
further assume the carrier MFP l0 ¼ 10 nm, which is
common in semiconductors, the lattice constant should
be smaller than 1.3 nm.

Figures 2(a) and 2(b) show the dependence of the maxi-
mum ZT on the bandwidth with different �0 values when
��W1D=2 is fixed to 2kBT in a 1D system and when
��W3D=2 is fixed to kBT in a 3D system, which are the
optimal chemical potentials for the maximum ZT value we
found from Fig. 1. In the 1D system, due to the energy-
independent TDF, we found that there is an individual
optimal bandwidth to maximize ZT1D for each �0 only
when �0 � 0:1. The optimal bandwidth increases with an
increase of �0. When �0 > 0:1, the maximum ZT1D does
not depend on the bandwidth for W1D > 3kBT. In the 3D
system, there always exists an optimal bandwidth for the
maximum ZT3D due to the energy dependence of the TDF.
The optimal bandwidth should be larger for larger �0

(larger �p). A larger �0 also results in a lower maximum

ZT3D. To obtain a ZT3D larger than 1, which is the value for
current commercial TE materials, i.e., the Bi2ð1�xÞSb2xTe3

alloy [26] near room temperature, �0 should be smaller
than 0.14. At room temperature, the optimization requires

�p;3D < 1 W=mK� l0�0:076 nm
a2

. There have been a lot

of attempts in reducing �p in 3D materials using a

nanostructuring approach to enhance ZT3D [6–8]. This
inequality for �p;3D essentially estimates the requirement

on �p, which makes ZT3D over 1.

Figure 3 compares ZT3D for the three different scattering
models. In the calculation, we choose �3D;0 ¼ 0:1 ps for

the constant relaxation time model, C3D ¼ 1034 s=Jm3,
which leads to an average relaxation time around 0.1 ps
for the � / DOS�1 model and l3D ¼ 10 nm for the
constant MFP model [27]. We also choose T ¼ 300 K,
�p ¼ 0:2 W=mK, a ¼ 1 nm, and ��W3D=2 ¼ kBT.

We note that the uncertainty principle model is not valid
when the bandwidth is larger than kBT. We thus do not plot
ZT3D for the uncertainty model in this figure. Apparently,
the optimal bandwidths for obtaining the maximum ZT3D

depend strongly on the relaxation time models. The opti-
mal bandwidth for the maximum ZT3D is found to be
W3D � 4kBT for the constant MPF model with a maximum
ZT3D ¼ 3:4 and W3D � 8kBT for the constant relaxa-
tion time model with a maximum ZT3D ¼ 2:2. When
� / DOS�1, ZT3D always increases with the bandwidth
W3D. In Fig. 3, we further show the effect of an additional
constant background TDF �bg to the TDF of narrow

conduction band [�3DðEÞ ! �3DðEÞ þ�bg] for the con-

stant MFP model. We find that zero ZT3D remains when
the bandwidth is zero, since the Seebeck coefficient is
zero. The optimal bandwidth shifts to a lower value
and the maximum ZT3D would be smaller than 1 when
�bg > 0:045�3Dð0Þ.
In summary, we have calculated the thermoelectric

figure of merit ZT by using the nearest-neighbor tight-
binding model with different scattering models for carrier
relaxation time in 1D, 2D, and 3D systems. When the
bandwidth is close to zero, the transport distribution
function is indeed finite, not infinite as previously
speculated [9], even though the carrier density of

FIG. 2 (color online). ZT plotted as a function of the bandwidthW� in (a) the 1D system and (b) the 3D system when �0 ¼ 0:06, 0.1,
0.14, and 0.18. The calculations use ��W1D=2 ¼ 2kBT for the 1D and ��W3D=2 ¼ kBT for the 3D system.
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states goes to infinity. Such a finite TDF results in a
zero electrical conductivity, a zero power factor, and a
zero ZT. We point out that the optimal ZT cannot be
obtained in an extremely narrow conduction band. The
existence of the optimal bandwidth for maximizing the
ZT depends highly on the carrier scattering models.
There exists an optimal bandwidth for a maximal ZT
within the constant carrier MFP approximation or constant
relaxation time approximation. If the carrier relaxation
time is inversely proportional to the DOS, no optimal
bandwidth exists for achieving a maximum ZT. A nonzero
optimal bandwidth for maximizing ZT is also dependent
on a dimensionless parameter which is proportional to the
lattice thermal conductivity. Our results could provide a
useful guide for searching for high efficiency thermoelec-
tric materials.
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