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A generalized theory of elasticity, taking into account the rotational degrees of freedom of point bodies

constituting a continuum, was proposed at the beginning of the twentieth century by the Cosserat brothers.

We report the experimental observation of coupled rotational-translational modes in a noncohesive

granular phononic crystal. While absent in the classical theory of elasticity, these elastic wave modes

are predicted by the Cosserat theory. However the Cosserat theory fails to predict correctly the dispersion

of the elastic modes in granular crystals even in the long-wavelength limit.
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One hundred years ago, the Cosserat brothers developed
a continuum elasticity theory accounting for the rotational
degrees of freedom of point bodies (infinitesimal particles)
constituting deformable solids [1]. Currently, this theory is
known as the Cosserat theory, and the related and advanced
theories are known as theories of Cosserat continuum or
as theories of micropolar continuum [2]. In the Cosserat
theory, each material point has 6 degrees of freedom, three
of which correspond to the translations as in the classical
theory of elasticity, and the three others correspond to
rotations. The stress tensor is asymmetric and an additional
couple-stress tensor is introduced, which plays the same
role for torques as the stress tensor plays for forces. The
theory predicts a contribution of rotations to the dispersion
of the shear elastic wave velocity as well as the existence of
additional rotational wave modes [3]. For the description
of an isotropic medium, the classical elasticity requires the
knowledge of the elastic constants � and � (the Lamé
constants) and the material density �. The Cosserat theory
requires four additional elastic constants �, ", �, �, de-
scribing the microstructure, and the density of the moment
of inertia J [2,4].

However, even 100 years after the Cosserats, the experi-
mental evidence of the Cosserat effects are rare, difficult to
obtain, and subject to criticism [2,3,5]. The additional rota-
tional mode resonances expected in the elastic vibration of
macroscopic micropolar bodies [6] have never been ob-
served. The determination and calibration of the additional
Cosserat elastic constants from static or quasisatic experi-
ments is delicate. In our opinion, the most crucial observa-
tion providing convincing evidence of the effects of the
rotational degrees of freedom, the milestone of the Cosserat
theory, would be the observation of the propagation of
rotational waves in elastically micro-inhomogeneous
media. The only cited observation [2,3] of rotational
waves in a specimen composed of metallic particles
randomly distributed in an epoxy polymer matrix [7] is

not convincing [8]. The rotational waves in the Cosserat
continuum theory is often considered a mathematical
possibility, but proving their actual existence by experi-
ments constitutes a serious endeavor [9].
Below, we demonstrate that important advantages for

testing the fundamentals of the Cosserat theory can be
gained through conducting the experiments in noncohesive
phononic granular crystals which are not saturated by
liquids. In noncohesive granular media, the macroscopic
dynamical behavior depends on the peculiar shear and
normal contact interactions between the spheres at the
microscopic level, which are well described by the Hertz-
Mindlin theory of contact [10,11]. According to this the-
ory, in the first aproximation, a weakly precompressed
granular crystal, where the diameters d of the contacts
between the beads are much smaller than the diameter a
of the beads (d=a � 1), can be reduced to a mass-spring
structure. Since the size of the grains is comparable to the
distance between neighbors, the rotational degrees of free-
dom of the beads must be taken into account in order to
accurately describe the dynamics of the granular media
[12,13]. However, while the bending rigidity of the con-
tacts [14] and their spin (torsional) rigidity generally con-
tribute to the effects of the rotation of the beads [9,15],
their contribution is not needed here. The moment [1,3]
applied to the beads due to these two rigidities is about
ða=dÞ2 � 1 times smaller than the moment applied to the
beads due to the shear rigidity. In the Cosserat continuum,
the absence of torsional and bending rigidities corresponds
to negligible nonclassical elastic constants ", �, and � and
to the absence of the momentum stresses acting on the
contacts between the beads. Thus, the only nonclassical
elastic constant expected to play an important role in non-
cohesive granular crystals is �, which introduces asymme-
try of the stress tensor. These circumstances provide
important simplifications in identifying the contribution
of rotational degrees of freedom to elastic wave motion
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in the noncohesive air-filled granular crystals in compari-
son with cohesive crystals or crystals infiltrated with other
media forming the matrix around the beads [16–21], where
the couple-stress tensor is not negligible. Here, we report
the experimental observations of rotational elastic waves.
A hexagonal close-packed (hcp) structure of identical elas-
tic beads is a vertical stacking of hexagonal layers A and B,
which are in the closest position relative to each others, in
an ABAB . . . sequence. In such packing, the theory predicts
the existence of translational modes, rotational modes, and
coupled rotational and translational modes [13]. The dis-
persion relations and the allowed frequency bands for the
propagation of different elastic modes can be analytically
predicted in the considered periodic granular media. This
facilitates the identification of the various propagating
modes. At frequencies much lower than the rotational
frequency bands, only the dispersionless longitudinal and
shear acoustic waves have been monitored in the classical
experiments [10]. At frequencies much higher than the
rotational frequency bands, the elastic signals related to
torsional and spheroidal resonances of the individual
beads and Rayleigh wave propagation on the surface of
the individual beads have been detected [22,23]. In our
experiments, due to the relatively weak static loading
applied to the crystal, the rotational wave frequencies
are about 10 times lower than the lowest vibrational
resonances of the individual beads. Thus, it is possible to
observe the effects of wave dispersion and forbidden zones
due to the medium periodicity without interference from
scattering phenomena due to the individual resonances of
the beads [24].

The elastic waves propagate in the direction perpendicu-
lar to the horizontal hexagonal layers, i.e., in the z direction
as shown in Fig. 1(a). In this direction of propagation, the
theory [13] predicts the existence of two pure longitudinal
modes LA and LO, two pure rotational modes R1 and R2

and four coupled transverse and rotational modes RT1,
TR1, RT2 and TR2. The four coupled transverse and

rotational modes can be split into two categories, the
transverse-rotational modes (TR), which are transverse
modes modified due to the presence of the rotational
degrees of freedom, and the rotational-transverse modes
(RT), which do not exist if the rotational degrees of
freedom are not taken into account. The space group of
the hcp structure contains a sixfold screw axis (or a sixfold
axis of rotation-inversion) along the z axis. Because of this,
all mode pairs whose dispersion curves cross at the point

A ¼ ½0; 0; ffiffiffiffiffiffiffiffi

3=8
p ð�=aÞ� of the irreducible Brillouin zone in

the reciprocal space (kx, ky, kz) become degenerate at this

point (the modes LO and LA for instance) [13,25,26]. It is
therefore possible to consider the dispersion relations in an
extended zone, from the point � ¼ ð0; 0; 0Þ to the point 2A
by unfolding the dispersion curves of mode pairs as shown
in Fig. 1(b). In the translational and rotational frequency
ranges, the modes L and RT have the highest cutoff fre-

quencies !c;discrete
L and !c;discrete

RT ¼ !c;discrete
R , respectively,

(the cutoff frequency of the mode RT merges with the one
of the mode R). The propagative frequency bands depend
on the rigidities of the contacts which in turn depend on the
static normal force N0 applied at the contact points. The
cutoff cyclic frequency of mode L is given by [13]

!c;discrete
L ¼f½2ð2þ�KÞð3aN0Þ1=3E2=3�=½mbð1��2Þ2=3�g1=2

¼½ð8KNþ4KSÞ=mb�1=2; (1)

where mb is the mass of one bead, E and � are the Young’s
modulus and Poisson’s ratio of the material of the beads,
respectively, and �K ¼ 2ð1� �Þ=ð2� �Þ ¼ KS=KN is the
ratio of shear KS to normal KN rigidities of the contact
[10]. The cutoff frequency of the mode RT is given by

!c;discrete
RT ¼½10�K=ð2þ�KÞ�1=2!c;discrete

L ¼½40KS=mb�1=2.
Observation of the dependence of the wave propagation
on external loading provides an additional opportunity for
testing the available theoretical predictions.
Even for macroscopically ordered structures, disorder at

the microscopic level of the contacts exists caused by a
weak polydispersity. In our experiments, the relative
dispersion in the contact rigidities is sufficiently reduced
by external loading of the granular crystal. All the mea-
surements are repeated for five different configurations of
contacts (a mechanical tap, which rearranges the contact
network, is applied to the crystal) to carry out a statistical
averaging of the response of the crystal. The theoretical
results are compared with the experimentally measured
wave transmittance through a granular crystal. The crystal
is excited on one side with a shear piezo transducer as
shown in Fig. 1(a). In order to discriminate the components
of the transmitted acoustic waves, two different transducers
are used for the detection on the other side of the crystal: a
compressional transducer, sensitive only to the longitudinal
mode (the mode L) and a shear transducer, preferentially
sensitive to shear modes (TR and RT) but nevertheless
also sensitive to the longitudinal mode (the mode L).

FIG. 1 (color online). (a) Experimental setup. (b) Theoretical
dispersion curves for propagation in the z direction of the hcp
granular crystal from the discrete lattice model (circles) and their
counterparts from the Cosserat continuum model (lines). The
cyclic frequency is normalized to the cutoff cyclic frequency
!0 ¼ !=!c;discrete

L of the mode L.
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Comparison of the two received signal spectra and fre-
quency dependent group delays allows us to determine
the polarization of the wave at a given frequency [8]. The
acoustic measurements are carried out with different
external loads corresponding to static forces applied at the
contacts of 2 to 32 mN per contact. The applied normal
forceN0 is assumed to be the same for all the contacts. From
these loads, the evaluated cutoff frequencies [Eq. (1)] for
the mode L cover the range from 60 to 97 kHz, and the
evaluated cutoff frequencies of the mode RT cover the
range from 103 to 166 kHz. For the estimations, we used
� ¼ 0:3, E ¼ 200 GPa, and mb ¼ 3:3:10�5 kg. The
typical contact diameters are of the order of 4–10 �m,
the diameter of the beads is 2 mm, and the wavelengths
range from the bead diameter up to 10 cm typically. The z
direction is also the direction of gravity which adds to the
loads at the contacts. Consequently, the cutoff frequencies
are estimated twice, once at the top of the crystal with the

static loading only and the second time at the bottom with
the weight of the crystal added to the static loading. The
theoretically evaluated cutoff frequencies reported in Fig. 2
are in agreement with the experimental measurements.
When the receiving transducer is sensitive only to com-
pression (mode L), the results show transmission cutoff
frequencies between 60 and 95 kHz, which correspond
to the cutoff frequencies of mode L. When the receiving
transducer is sensitive to both longitudinal and shear
displacements (modes L and RT), the measured cutoff
frequencies are situated between 105 and 170 kHz, which
correspond to the cutoff frequencies of mode RT. The
frequency range of propagation of the RT mode lies
between the cutoff frequencies observed with the com-
pressional transducer and those observed with the shear
transducer. The good agreement between the theoretical
and measured variations of the cutoff frequencies with the
external static loading confirms the good description given
by the theory.
Exciting the system with a short pulse of 11 �s duration,

all acoustic frequencies are emitted nearly simultaneously.
In this case, the dependence of the wave arrival time on
frequency provides information on the dispersion relations
of the different modes. The theoretical arrival times are
predicted using the group velocities deduced from the
dispersion relations. In Fig. 3, the spectrograms of the
transmitted signals measured with the compressional and
the shear transducers are presented. With the compres-
sional receiving transducer, only the frequencies corre-
sponding to mode L are visible, and the measured arrival
times correspond to those calculated from theory. With the
shear receiving transducer, the frequencies corresponding
to the mode RT are also visible, and the arrival times
correspond to the theoretical curves of the modes L, TR,
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FIG. 2 (color online). Comparison of the experimental cutoff
frequencies with the theoretical evaluations. (a) Wave trans-
mittance in an aluminum reference block measured with the
shear (continuous line) and compressional (dashed line) trans-
ducers. The acoustical energy is transmitted in the whole
frequency range from low frequencies to 200 kHz.
(b) Transmittance measured in the granular crystal under an
applied static loading of 20 mN per contact (22 mN at the
bottom). The measurement with the shear transducer shows a
cutoff frequency close to 150 kHz. The measurement with the
compressional transducer shows a cutoff frequency close to
80 kHz. (c) Dependence of the cutoff frequencies measured
with the shear (circles) and compressional (squares) transducers
on the external loading. Error bars correspond to a 90% con-
fidence interval.

FIG. 3 (color online). Received signals from a shear transducer
(left) and a longitudinal transducer (right) after transmission
through a crystal under static loading of 10 mN per contact
(12 mN at the bottom). The excited shear pulse is centered on
200 kHz. Normalized temporal signals are shown at the top, the
spectrograms at the bottom. Theoretical arrival times of the
modes are shown in continuous lines (10 mN per contact) and
dashed lines (12 mN per contact).
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and RT. The experimental arrival times of modes L, TR,
and RT look similar to the theoretical predictions, although
the spectrogram tool has some intrinsic uncertainty both in
time and frequency determination [27]. The good agree-
ment between theory and experiment shows convincing
evidence that the RT mode is experimentally observed.

The experimental observation above, indicating wave
propagation in granular crystals that can only exist in
the presence of bead rotation interactions, is a direct
confirmation of the Cosserat idea that the rotational
degrees of freedom should be, in general, taken into
account in the description of the elastic behavior of
micro-inhomogeneous materials. It is, then, interesting to
understand how useful the Cosserat theory could be for the
description of long-wavelength elastic waves in granular
crystals when the medium properties can be homogenized
and the medium is considered isotropic in a first approxi-
mation. We should compare the granular crystal in the limit
kz ! 0 with the Cosserat continuum characterized by a
single nonzero nonclassical elastic constant � [8]. This
constant introduces asymmetry of the ordinary stress
tensor which is caused by the existence of the density of
the moment of inertia J. The latter can be found in our
hexagonal close-packed granular crystal precisely due to

the knowledge of the packing density 	 ¼ �=ð3 ffiffiffi

2
p Þ ’

0:74 and the moment of inertia of an individual bead
I ¼ ð1=10Þmba

2. From the values of the packing density,

it follows that there are
ffiffiffi

2
p

beads in a cube with an edge

equal to a. Thus, it provides the estimate J ¼ ffiffiffi

2
p

I=a3 ¼
	�ba

2=10 where �b is the density of the material
constituting the beads. At the next step, the nonclassical
constant � is estimated from the comparison of our
theoretical prediction for the common cutoff frequency

!c;discrete
R;RT of the R and RT modes with the theoretical value

for the same frequency in the Cosserat continuum [4]

!c;Cosserat
R;RT ¼ 2ð�=JÞ1=2. We find � ¼ ffiffiffi

2
p

KS=a. From the

comparison of the velocities in the limit of infinitely low
frequencies of the TR modes in the granular crystal

vdiscrete
TR ¼ ½a2ðKN þ 2KSÞ=ð3mbÞ�1=2 and in the Cosserat

continuum vCosserat
TR ¼ ð�=�Þ1=2, where � ¼ 	�b is the

density of the homogenized media, the shear rigidity of

the homogenized material � ¼ ffiffiffi

2
p ðKN þ 2KSÞ=ð3aÞ is

obtained. The ratio �=� ¼ ð6� 6�Þ=ð6� 5�Þ character-
izing the asymmetry of the stress tensor is about 0.93 for
the beads with the Poisson’s ratio � ’ 0:3.

However, with the defined parameters of the hypotheti-
cal Cosserat continuum, the Cosserat theory is unable to
reproduce the dispersion relations for the long waves in the
noncohesive granular crystal, i.e., at small but finite wave
numbers (kz ! 0, kz � 0) as shown in Fig. 1(b). In the
Cosserat continuum, the purely rotational mode R becomes
dispersionless, while the dispersion curve of the RT mode,

which emerges from the frequency!c;Cosserat
R;RT common with

the R mode, is concave upward due to the repulsion of the

rotation-dominated and shear-dominated (RT and TR, re-
spectively) acoustic modes. In fact, the positive concavity
is a rather general feature of the Cosserat continuum, even
in the presence of the moment stresses or in the anisotropic
Cosserat continuum [28], and in such generalizations of
the Cosserat continuum as microstretch continuum and
micromorphic continuum [2]. Contrary to this, the disper-
sion curves of the R and RT modes, which emerge in the

discrete model from the common !c;discrete
R;RT , are concave

downward in the hexagonal and cubic noncohesive
granular crystals [13,15] as shown in Fig. 1(b).
To understand the reasons for these differences between

the discrete and the Cosserat theory, it is insightful to
consider the limiting case J=� ! 0, by assuming that the
density J of the moment of inertia tends to zero and keep-
ing the same density � of the medium. This formally
represents the situation where the mass of an individual
bead is 
 localized at the center of the sphere. The analysis
demonstrates that the propagating frequency bands of the
dispersion relations of the two rotational modes tend to
infinity [13], while the frequency bands of the propagating
translational modes remain finite. This cancels the effect of
mode repulsion on the bending of the dispersion relations.
In the Cosserat continuum, mode RT becomes dispersion-
less while both rotational modes in the discrete theory are
concave downward. This demonstrates the dominance of
material periodicity (inhomogeneity), which induces co-
herent wave scattering, over mode repulsion and explains
the concave downward dispersion relations of real granular
crystals shown in Fig. 1(b) (i.e., where J=� is nonzero).
Though the analysis indicates that positive concavity of
the dispersion curves for the R and RT modes in three-
dimensional granular crystals could be caused by strong
bending rigidity [9,15,29], this does not change the follow-
ing general conclusion derived from the comparison of
wave propagation in granular crystals to that in the
Cosserat continuum. The spatial inhomogeneity of the
materials strongly influences the dispersion relations of
the eigenmodes by inducing wave scattering and the addi-
tional rotational degrees of freedom. The Cosserat theory
accounts for the possible rotations and formally incorpo-
rates a characteristic scale of inhomogeneity. However, the
Cosserat theory describes the possible wave scattering
phenomena in microinhomogeneous media at least incom-
pletely. The generalized elasticity theory valid for the
description of long waves in granular crystals should also
explicitly incorporate the spatial scale of inhomogeneity in
order to account for the multiple scattering of the waves.
Thus, the Cosserat theory should be combined with higher
gradient theories [29–31]. It can be verified that the con-
tinuum models for the granular media [29,31], which have
been derived by homogenization of the discrete equations
of motion for isotropic disordered granular packings, pre-
dict the negative concavity of the dispersion curves for the
R and RT modes when the couple stresses are negligible.
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In summary, the influence on elastic wave propagation
of interactions related to rotational degrees of freedom
in noncohesive granular crystal has been studied. The
propagating rotational-transverse mode existing due to
the rotational degrees of freedom has been revealed
experimentally. Theoretical comparison of the waves in
the homogenized granular crystals with those in the
Cosserat continuum has demonstrated that the Cosserat
theory does not account for all the influences of the mate-
rial inhomogeneity on its elastic behavior.
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