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Recent fluorescence spectroscopy measurements of single-enzyme kinetics have shown that enzymatic

turnovers form a renewal stochastic process in which the inverse of the mean waiting time between turnovers

follows the Michaelis-Menten equation. We study enzyme kinetics at physiologically relevant mesoscopic

concentrations using a master equation. From the exact solution of the master equation we find that the

waiting times are neither independent nor identically distributed, implying that enzymatic turnovers form a

nonrenewal stochastic process. The inverse of the mean waiting time shows strong departure from the

Michaelis-Menten equation. The waiting times between consecutive turnovers are anticorrelated, where

short intervals are more likely to be followed by long intervals and vice versa. Correlations persist beyond

consecutive turnovers indicating that multiscale fluctuations govern enzyme kinetics.
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Biological processes rely crucially on the catalytic
activity of enzymes. In 1913, following the work of
Wurtz and several others [1], Michaelis and Menten pro-
posed [2] a reaction mechanism for catalysis where
enzyme E binds reversibly with substrate S forming an
enzyme-substrate complex ES which then dissociates irre-
versibly to form product P, while regenerating the enzyme:

Eþ SÐk1
k�1

ES!k2 Eþ P. For thermodynamically large num-

bers of reactants, deterministic mass action kinetics pro-
vides the temporal variation of the concentrations of
enzyme, complex and product. The rate of product forma-
tion is given by the classic Michaelis-Menten (MM)
equation, provided suitable adiabaticity conditions are
satisfied [3].

However, enzyme and substrate concentrations in bio-
chemical catalysis are not thermodynamically large.
In vivo enzyme concentrations vary from nanomolar to
micromolar, while the substrates are typically between
ten and ten thousand times more numerous [4]. An impor-
tant exception is in glycolysis where substrate concentra-
tions exceed those of enzymes [4]. In vitro enzyme
concentrations vary from picomolar to nanomolar and
substrates are typically a million times more numerous
[5]. At these low concentrations, the inherent stochasticity
of a single chemical reaction and the discrete change in the
number of reactant molecules combine to generate sponta-
neous, intrinsic fluctuations known as molecular noise [6].
The temporal variation of catalysis, then, is also influenced
by molecular noise and is a stochastic process in time.
Recent advances in single molecule spectroscopy have
been able to unravel some features of this stochastic cata-
lytic process involving a single enzyme and numerous
substrates [7,8]. A striking feature is that the enzymatic
turnovers generate a renewal point process where the

waiting time � between product formation events is inde-
pendently and identically distributed. Remarkably, the in-
verse of the mean waiting time h�i�1 obeys the MM
equation which, in this interpretation, is valid not only
for thermodynamically large systems, but also at the
single-enzyme level.
In this Letter, we study the stochastic process of enzy-

matic turnovers at concentrations between the extremes of
the thermodynamically large and single-enzyme regimes.
In the thermodynamic limit the process reduces to deter-
ministic evolution governed by mass action kinetics, while
in the single-enzyme limit it reduces to a renewal process.
Our key findings are that for mesoscopic numbers of
enzymes, the turnover process is of the nonrenewal type
with waiting times that are neither independent nor iden-
tically distributed. We calculate the waiting time distribu-
tions and show that their inverse first moments do not obey
the MM equation. Consecutive waiting times are anticor-
related, with short intervals more likely to be followed by
long intervals and vice versa. The correlations persist
beyond consecutive turnovers and, depending on the num-
ber of enzymes, can become substantially long-ranged.
Together, these results imply that the enzymatic turnovers
at the mesoscale cannot be described by mean production
rates (as in the thermodynamic limit) or mean waiting
times (as in the single-enzyme limit), but must be de-
scribed by statistical measures which capture fluctuations
over multiple time scales.
Model.—We begin by describing the catalytic process

through PðnE; nES; nP; tÞ, the joint probability that there are
nE enzymes, nES enzyme-substrate complexes and nP
products at any time t, starting initially with N enzymes,
S substrates and no complexes or products. Assuming that
the system is well mixed, the probability is taken to obey
the Markovian chemical master equation
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_PðnE; nES; nP; tÞ
¼ kaðnE þ 1ÞPðnE þ 1; nES � 1; nP; tÞ
þ k�1ðnES þ 1ÞPðnE � 1; nES þ 1; nP; tÞ
þ k2ðnES þ 1ÞPðnE � 1; nES þ 1; nP � 1; tÞ
� ½kanE þ ðk�1 þ k2ÞnES�PðnE; nES; nP; tÞ (1)

with the transition rates chosen to describe the MM ki-
netics of the enzyme catalysis reaction system given ear-
lier. Since substrates are more numerous than enzymes, the

bimolecular second-order complexation step Eþ S!k1 ES
is replaced by a pseudo-first-order complexation step with
an effective rate constant ka ¼ k1S. The master equation
generates stochastic trajectories of the kind shown in
Fig. 1. Since enzymes are either converted to the
enzyme-substrate complex or are regenerated from it,
physical trajectories obey the constraint nE þ nES ¼ N at
all times. The probability distribution of these trajectories
can then be written as PðN � nES; nES; nP; tjN; SÞ which
we abbreviate to PðnES; nP; tjNÞ. This simplifies the solu-
tion as there are two, and not three, independent variables.

Exact solution.—We use the generating function method
to obtain an exact solution of the master equation. A related
solution with nE and nP as independent variables is given
in [9]. Defining the generating function as

Gðs1; s2; tÞ ¼
X
nES

X
nP

snES1 snP2 PðnES; nP; tjNÞ (2)

we find from the master equation its equation of
motion [10],

@tGðs1; s2; tÞ ¼ kaNðs1 � 1ÞGðs1; s2; tÞ
þ ½ð1� s1Þðkb þ kas1Þ
� k2ð1� s2Þ�@s1Gðs1; s2; tÞ; (3)

where k�1 þ k2 ¼ kb. This partial differential equation in
s1, s2 and t can be solved by the method of characteristics
which, after a lengthy calculation, yields

Gðs1; s2; tÞ ¼ 1

2N

�
e�ðB�A0Þt þ e�ðBþA0Þt

þ kb � kað1� 2s1Þ
2A0 ½e�ðB�A0Þt � e�ðBþA0Þt�

�
N
;

(4)

where A0 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðka þ kbÞ2 � 4kak2ð1� s2Þ
p

and B ¼
1
2 ðka þ kbÞ. PðnES; nP; tjNÞ, obtained from the coefficient

of the Taylor expansion of the generating function in the s1
and s2 variables, is an exact solution to the master equation.
To support and complement this exact analytical solution,
we generate exact numerical trajectories of Eq. (1) using
the Doob-Gillespie algorithm [11]. For the numerical
simulations we nondimensionalize time in units of k2 and
choose rate constants as ka ¼ k2 and k�1 ¼ 1

2 k2. We gen-

erate ensembles of typically 106 trajectories to obtain the
probability distributions of interest. One such trajectory is
shown in Fig. 1.
Turnover statistics.—The trajectories in Fig. 1 can be

described in two alternative ways: we can count the num-
ber of enzymatic turnover events nP that have occurred in
duration of time t, or we can specify the time Tp at which

the pth turnover occurs. The former, called the counting
process description [12], has been used in most previous
studies as it follows directly from the solution
PðnES; nP; tjNÞ of the master equation. The latter, called
the point process description [13], has not (to the best of
our knowledge) been studied before for multiple enzymes.
This is the focus of our work.
We define turnover times as Tp ¼ infft > 0: nPðtÞ � pg

for p ¼ 1; 2; . . . , which implies that Tp � t if and only

if nPðtÞ � p. This provides the connection between
the counting and point processes and relates the
cumulative distribution of Tp to that of nP by PðTp � tÞ ¼
Pðnp � p; tÞ [12]. Waiting times are defined from the

turnover times by �p ¼ Tp � Tp�1 with the convention

that T0 ¼ 0. The point process is fully specified by the
joint probability distributions w of either the Tp or the �p
[12,13]. Here we focus on the first-order distributions of
the time to the pth turnoverwðTpÞ and the interval between
the pth and (pþ 1)th turnovers wð�pÞ. We use second-

order distributions wð�p; �pþqÞ to study correlations be-

tween the pth and (pþ q)th turnovers.
First-order distributions.—We derive exact expressions

for wðTpÞ from the master equation solution using the

connection between the counting and point processes.
It follows that PðTp � tÞ ¼ PðnP � p; tÞ ¼ 1�
PðnP < p; tÞ ¼ 1�Pp�1

nP¼0 PðnP; tÞ. Since PðnP; tÞ ¼P
nES

PðnES; nP; tjNÞ, it follows by differentiation that
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FIG. 1 (color online). A trajectory of Eq. (1) for N ¼ 2 en-
zymes. The pth product is generated at time Tp. The waiting

time between the pth and (pþ 1)th product is �p ¼ Tpþ1 � Tp.
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wðTpÞ ¼ � Xp�1

np¼0

X
nES

@tPðnES; nP; tjNÞjt¼Tp
: (5)

For fixed np, the terms in the inner summation are related

to the time derivative of Gðs1; s2; tÞ evaluated at s1 ¼ 1
through Eq. (2). The equation of motion, Eq. (3), is then
used to eliminate the time derivative of Gðs1; s2; tÞ in favor
of its s1 derivative. From this, each term of the outer
summation is obtained by taking nP derivatives with re-
spect to s2, setting s2 ¼ 0 and then summing over nP to
give [14]

wðTpÞ ¼ k2
ðp� 1Þ! ½@

p�1
s2 @s1Gðs1; s2; TpjNÞ�s1¼1;s2¼0: (6)

Using Eq. (4), wðT1Þ ¼ k2½@s1Gðs1; 0; T1jNÞ�s1¼1 is ob-

tained as

wðT1Þ ¼ k2kaN

ð2AÞN ½eðA�BÞT1 � e�ðAþBÞT1�
� ½ðAþ BÞeðA�BÞT1 þ ðA� BÞe�ðBþAÞT1�N�1 (7)

and this is identical to wð�1Þ. Here A ¼ 1
2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðka þ kbÞ2 � 4kak2

p
and B ¼ 1

2 ðka þ kbÞ. Since higher

waiting times are differences of consecutive turnover
times, the joint probability of consecutive turnovers is
needed to calculate the wð�pÞ for p > 1. This requires an

involved calculation which we bypass by directly comput-
ing waiting time distributions from simulation trajectories.

In Fig. 2 we compare wð�pÞ for p ¼ 1, 10, 100

for a reaction with N ¼ 1000 enzymes. The �p are not

identically distributed. There is excellent agreement be-
tween the numerical result and the analytical expression
for wð�1Þ, Eq. (7), plotted as a solid line. In the inset we
plot wð�pÞ for a single enzyme. The �P are identically

distributed and agree with the analytical expression in
Eq. (7) with N ¼ 1. This clearly establishes the nonre-
newal nature of the turnover process when more than one
enzyme participates in catalysis.
Surprisingly, starting with a Markovian master equation

where waiting times between transitions are exponentially
distributed, we obtain a waiting time between turnovers
that is multiexponential. For this, it is crucial to have more
than one enzyme in the system. Then, as Eq. (5) shows,
multiple internal states for the enzyme-substrate complex
have to be summed over, and the resulting point process for
the products alone is no longer Markovian. The multi-
exponentiality of the waiting times is therefore consistent
with the non-Markovian nature of the turnovers. For a
single enzyme with only one internal enzyme-substrate
state, there is no multiexponentiality but only a monoex-
ponential rise and fall. This is in agreement with earlier
experimental [8,15], numerical [7], and analytical [15]
results.
Moments of first-order distributions.—For a single

enzyme, it follows from Eq. (7) that hT1i ¼R1
0 dT1T1wðT1Þ ¼ ðSþ KMÞ=k2S. The inverse of hT1i

then obeys the MM equation which has lead Xie and co-
workers to extend the validity of the MM equation to the
single-enzyme level [7,8,15]. However, for multiple en-
zymes, we find that the first moment no longer obeys the
Michaelis-Menten equation as can be seen in in Fig. 3,
where we plot NhT1i against 1=ka in Lineweaver-Burk
fashion. Thus, a turnover time interpretation of the MM
equation is no longer valid for multiple enzymes.
If N independent single-enzyme MM renewal process

trajectories were to be pooled, there would be an N-fold
decrease in the mean turnover times. Figure 3 shows that
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FIG. 2 (color online). Waiting time distributions for N ¼ 1000
and N ¼ 1 enzymes. The waitings times are identically distrib-
uted for a single enzyme (inset), but vary with the turnover
number p for multiple enzymes. Solid lines are analytical results
obtained from Eq. (7) while the symbols are simulation data.
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FIG. 3 (color online). First moment of T1 plotted in
Lineweaver-Burk fashion against the inverse rate constant ka.
Solid lines are first moments of Eq. (7) while symbols are
simulation data. With more than one enzyme, the MM equation
(circles) is obeyed only in the limit of infinite substrate concen-
tration or equivalently for 1=ka ! 0.
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hT1i is larger than the MM estimate, indicating a slowing
down of the kinetics due to cooperativity. The mean turn-
over time converges to the MM estimate only in the limit of
infinite substrate concentration or equivalently for 1=ka !
0. Means hTpi show similar behavior.

The nonlinearity in hT1i is arises from the multiexpo-
nentiality of wðT1Þ. For large N, there is no closed form
analytical expression for the mean turnover time. However,
in the limit of ðka þ kbÞ2 � 4kak2, which amounts to the
steady-state approximation in the deterministic kinetics,
the expression for the mean turnover time is given by

hT1i � 1

N�

�
1� ðN � 1ÞN2�6

kak2ðkak2 þ ðN � 1Þ�2Þ2

� N2�4

ðkak2 þ ðN � 1Þ�2Þ2

þ ðN � 1ÞN2�6

kak2ð2kak2 þ ðN � 2Þ�2Þ2
�
: (8)

This is obtained by using A� B � ��, Aþ B � 2B and
� ¼ kak2=ðka þ kbÞ in Eq. (7), Taylor expanding to first
order in ð�=2BÞ exp½�ð2B� �ÞT1� and then computing
the first moment of the approximated distribution [14].
The negative sign of the leading order correction term
explains the curvature of the plot in Fig. 3.

Second-order distributions and memory.—We compute
the joint distributions wð�p; �pþqÞ of �p and �pþq and their

correlation coefficient from numerical trajectories. In
Fig. 4 we plot the correlation coefficient against lag q,
showing the joint distribution of consecutive intervals in
the inset. The waiting times are anticorrelated, where a
short first interval is more likely to be followed by a long
second interval and vice-versa. This memory effect shows
a systematic variation with enzyme number, being strong
and short-lived for fewer enzymes but weak and long-lived

for more enzymes. With long-lived memory, fluctuation
statistics will vary with the size of the temporal window,
and multiple measures will be required to characterize the
turnover process. In future work, we plan to explore this
systematically by studying higher-order joint distributions.
The overall effect of the anticorrelations is to reduce the
variance in the product turnovers when compared with a
Poisson process. This may be biologically relevant to
ensure a uniform rate of turnover in the steady state.
Conclusion.—The nonrenewal properties of enzymatic

turnovers presented here can be verified by fluorescence
experiments with well-mixed reactants. Fluctuations of
intermediate states lead to multiexponential waiting time
distributions for the product and to correlations between
waiting times. These nonrenewal aspects should also ap-
pear in other models of catalysis which involve several
types of enzyme-substrate intermediates. Fluctuations of
intermediate states can provide a model for dynamic dis-
order, which has previously been modeled by fluctuating
reaction rates. For second-order kinetics with substrate
fluctuations [16], we numerically compute low order wait-
ing time distributions and find negligible differences with
our results. This justifies our use of pseudo-first-order
kinetics, which remains a reliable approximation at early
times even when substrates fluctuate. In conclusion, the
main implication of our work is that enzyme kinetics must
be approached as a nonrenewal stochastic process in time
with fluctuations at multiple time scales.
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