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Many cytoskeletal biopolymers are ‘‘active,’’ consuming energy in large quantities. In this Letter, we

identify a fundamental difference between active polymers and passive, equilibrium polymers: for equal

mean lengths, active polymers can reorganize faster than equilibrium polymers. We show that equilibrium

polymers are intrinsically limited to linear scaling between mean lifetime (or mean first-passage time, or

MFPT) and mean length, MFPT� hLi, by analogy to 1D Potts models. By contrast, we present a simple

active-polymer model that improves upon this scaling, such thatMFPT� hLi1=2. Since, to be biologically
useful, structural biopolymers must typically be many monomers long yet respond dynamically to the

needs of the cell, the difference in reorganization kinetics may help to justify the active polymers’ greater

energy cost.
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Cytoskeletal polymers play a key role in cellular repro-
duction, locomotion, and transport [1–3]. Biopolymers like
actin filaments and microtubules in eukaryotes and FtsZ,
MreB, and ParM in prokaryotes grow by accumulating
monomers bound to the nucleotide triphosphates ATP or
GTP. The monomers hydrolyze these triphosphates to the
diphosphates ADP or GDP, consuming energy in an irre-
versible process and inducing conformational changes that
destabilize the polymers. In some cells, cytoskeletal ATP
consumption can approach 50% of total cellular ATP con-
sumption [4,5]. What advantage do active polymers offer
over passive, equilibrium polymers to justify this costly
energy expenditure?

We highlight a fundamental difference between active
and equilibrium polymers: active polymers can reorganize
faster than equilibrium polymers. Moreover, this difference
in reorganization times widens as mean polymer length
grows. Since biological structures like mitotic spindles or
pseudopods must reach a certain size to accomplish their
function yet be quickly deconstructed and reorganized, this
intrinsic difference may at least partly justify the active
polymers’ greater energy cost.

A large class of equilibrium models describes a polymer
as an ordered sequence of monomers, each of one of q
types (including different conformational states of the
same molecule). Monomers can attach, detach, and poten-
tially interconvert among the q types. Interactions between
neighboring monomers fi; iþ 1g contribute free energy
Jfi;iþ1g to the total free energy of the polymer. Such models

can also describe polymers consisting of bundles of k
protofilaments, by increasing the number of ‘‘monomer’’
types to qk. These models are generalizations of 1D,
qk-state Potts models [6]. The free energy of an equilib-
rium polymer in these models scales as the polymer length

L for large L, specifically F � L�max, where �max is the
largest eigenvalue of the transfer matrix [7]. Hence, the
equilibrium distribution of polymer lengths will be expo-

nential, pðLÞ � e�L=hLi, with a characteristic mean length
hLi ¼ kT

�max
. Because for large L the free energy effectively

depends on only the largest eigenvalue �max, the dynamics
are essentially one-dimensional even for polymer bundles.

This means that the effective force � dF
dL � ��max is con-

stant, generating a constant negative-velocity drift in the
polymer length, with drift velocity vd / ��max. (Polymers
maintain a finite equilibrium distribution because this
negative drift is balanced by diffusion and nucleation of
new polymers.) Importantly, since the polymer length
drifts towards zero at constant negative drift velocity,
starting from the nucleation length Lnucl, the mean polymer

lifetime scales as Lnucl

jvdj / 1
�max

/ hLi. Thus, the mean polymer

lifetime or mean first-passage time (MFPT) scales as the
mean length hLi for equilibrium polymers. This linear
scaling is a fundamental limit for an equilibrium polymer.
In order to improve upon it, a biological system must
employ active or out-of-equilibrium processes. As an ex-
ample, we present a simple active-polymer model based on

microtubule dynamics that yields MFPT� hLi1=2.
Microtubule growth and disassembly dynamics have

been well-studied [8–10]. In microtubules (and ParM),
GTP hydrolysis leads to stochastic rapid disassembly of
the entire polymer in a process called dynamic instability;
the classic experimental results [11] are reviewed in [1].
Recent detailed models aim to explain specific aspects of
the experimental data [12–16]. We consider instead a
minimal microtubule model [17] that incorporates dy-
namic instability. Specifically, we model an active polymer
as an ordered sequence of monomers, each of which is
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bound either to GTP or GDP (Fig. 1). We call the group of
GTP-bound monomers at the front of the polymer the
‘‘cap’’ and denote its size by x. We denote the total number
of monomers (the polymer length) by L. GTP-bound
monomers bind and unbind at the front end of the polymer
with rates kþ and k�, respectively [Fig. 1(a)]. GTP-bound
monomers at the back of the polymer cap undergo
hydrolysis to become GDP-bound monomers with rate kh
[Fig. 1(b)]. If the cap size shrinks to zero, the polymer
completely disassembles [Fig. 1(c)]. New polymers of
length and cap size 2 are nucleated with rate knucl. We
call the concentration of free GTP-bound monomers c and
analytically treat the mean-field regime where c is con-
stant, a good approximation for eukaryotic cells where the
number of monomers is typically large (� 106). For com-
parison, we also consider an equilibrium polymer that
obeys the same rules but without hydrolysis, so that its
length and cap size are equal. We show explicitly that this
particular equilibrium model satisfies the general equilib-
rium scaling relation MFPT� hLi.

The exact master equation for the concentration CL;x of

polymers of length L and cap size x is

d

dt
CL;x ¼ kþcðCL�1;x�1 � CL;xÞ þ k�ðCLþ1;xþ1 � CL;xÞ

þ khðCL;xþ1 � CL;xÞ þ knuclc
2�L;2�x;2: (1)

Coarse-graining this equation leads to a continuum
Fokker-Planck (FP) description of the probability p ¼
pðx; L; tÞ that a single active polymer will have length L
and cap size x at a time t after its birth:

@p

@t
¼D

@2p

@x2
þDLL

@2p

@L2
þDxL

@2p

@x@L
�a

@p

@x
�g

@p

@L
; (2)

where D¼Dxx¼ 1
2ðkþcþk�þkhÞ, DLL ¼ 1

2 ðkþcþ k�Þ,
and DxL ¼ kþcþ k� are diffusion coefficients; a ¼
kþc� k� � kh is the cap drift velocity (a < 0); and

g ¼ kþc� k� is the length drift velocity. The FP
equation (2) describes the time evolution of an individual
polymer born at time 0 (the time coordinate t represents
polymer age). In the mean-field regime, each polymer
evolves independently once nucleated, and hence the
knucl term does not appear (for details, see [18]). Assuming
g � �a, the effect of cap diffusion dominates the effect of
length diffusion, and so we may neglect the DLL and DxL

terms [18]. Solving the FP equation (2) yields

pðx; L; tÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffi
4�Dt

p e½�ðx�at�2Þ2=4Dt�

� ð1� eð�2x=DtÞÞ�ðL� gt� 2Þ; (3)

where the initial condition is pðx;L;0Þ¼�ðx�2Þ�
�ðL�2Þ—i.e., polymers nucleate with length and cap
size 2—and the boundary condition is pð0; L; tÞ ¼ 0—
i.e., polymers with cap size zero disassemble. (Changing
the nucleation size does not affect any essential results.)
The distribution of polymer lifetimes or first-passage

times (FPTs) is

PFPTðtÞ ¼ � d

dt

ZZ 1

0
pðx; L; tÞdxdL

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffi
�Dt3

p e�½ðatþ2Þ2=4Dt�; (4)

and the MFPT has the simple form MFPT ¼ �2=a. The
steady-state polymer length distribution is

PactiveðLÞ ¼
ZZ 1

0
pðx; L; tÞdxdt; (5)

yielding the active-polymer average length

hLiactive ¼
Z 1

0
PactiveðLÞLdL ¼ gðD� aÞ

a2
; (6)

so that, for long polymers ðhLi � 1; jaj � 1Þ, one finds

hLi ’ gD=a2, and therefore MFPT ¼ �2=a� hLi1=2 to
leading order. This sublinear scaling requires some non-
equilibrium process, here the irreversible hydrolysis of
monomers. Note that the details of the nonequilibrium
model do matter to the degree of sublinearity; for example,
a more realistic microtubule model [17] yields MFPT�
hLi0:7 [18].
By comparison, in the equilibrium limit of this model,

the cap is the entire polymer. Dropping the d=dL terms in
(2) yields an equilibrium solution that looks like (3)
without the factor �ðL� gt� 2Þ. The equilibrium length
distribution can then be obtained by integrating over
polymer age:

PequilðLÞ ¼ � a

D
eaL=D; (7)

and the equilibrium-polymer average length is hLiequil ¼
�D=a. Hence, we recover the linear scaling MFPT� hLi
expected for equilibrium polymers.

FIG. 1 (color online). Schematic of growth and disassembly of
a model active polymer. (a) GTP-bound monomers [light gray
(green) circles] bind and unbind at the front end of the polymer.
(b) The last GTP-bound monomer at the back of the cap under-
goes hydrolysis to become an GDP-bound monomer [dark gray
(blue) circles], decreasing the cap size by one. (c) If the cap size
shrinks to zero, the polymer completely disassembles.
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To validate these scaling relations, the master
equation (1) was simulated using the Gillespie algorithm
[19]. The monomer addition rate kþ was held fixed
throughout the simulations. For equilibrium polymers, we
set kh ¼ 0, while, for active polymers, for simplicity, we
set k� ¼ 0. The nucleation rate knucl was tuned to hold the
steady-state fraction of polymerized material constant at
75%, with knucl from 10�5 to 10�8. This is in line with
experimentally measured values for microtubules [20].
(Changing the fraction of polymerized material to 95%
does not affect the qualitative results [18].) This leaves a
single free parameter, k� for equilibrium polymers and kh
for active polymers, to control the polymer length and
MFPT. With only a single free parameter, each system is
fully constrained by holding either the MFPT or the aver-
age length fixed, thus yielding a fair comparison between
the equilibrium and active polymers.

Figure 2(a) shows the MFPT of the equilibrium and
active polymers as functions of their average length. The
data points are from simulations using 400 000 monomers;
the curves are from MFPT ¼ �2=a combined with
hLiequil ¼ �D=a and (6) for hLiactive. The MFPT scales

�hLi for equilibrium polymers and �hLi1=2 for active
polymers, as expected. Hence, for the same average length,
the active polymers have much shorter mean lifetimes than
the equilibrium polymers, and this difference widens
as average length grows. Figure 2(b) compares length

distributions for the equilibrium and active polymers with
the same MFPT ( ’ 10). Theoretical results from (5) and
(7) are shown in solid black lines. Agreement between
simulation and theory is excellent, validating our use of
the FP equation. (For a comparison of length distributions
with the same hLi, see [18].)
What might be the biological consequences of the differ-

ent equilibrium- and active-polymer scaling relations? To
address this question, we examine the time scale for large-
scale spatial reorganization of structures, i.e., the time
needed for a system to disassemble polymers at one site,
move the material to another site, and reassemble new
polymers. Cells often accomplish large-scale polymer re-
organization in vivo by spatially regulating nucleation
[21–23]. To model such regulation simply, we consider
two spatial sites. We start simulations with nucleation
occurring only at site 1, allow the system to come to a
steady state, then switch off nucleation at site 1 and switch
on nucleation at site 2. Monomers are assumed to transition
between the two sites with a ‘‘diffusion’’ rate kD, while
polymers do not diffuse. We define the ‘‘reorganization
time’’ as the time needed after the nucleation switch for
50% of the final steady-state amount of polymerized mate-
rial to assemble at site 2. Initially, we assume diffusion to be
fast (kD ¼ 1), so that a single effective pool of free mono-
mers is shared between the two sites, and then we consider
the more biologically relevant finite-diffusion regime.

FIG. 2 (color online). Lifetimes versus length for equilibrium [dark gray (blue) lines and dots] and active [light gray (red) lines and
dots] polymers. (a) MFPT to polymer disassembly versus average length. The monomer addition rate kþ is held fixed, and time is
always measured in units of ðkþcÞ�1, the mean time for monomer binding. Solid lines are fits to theory with slopes 1 and 0.5 for
equilibrium and active polymers, respectively. Some error bars are smaller than data-point symbols. (b) Length distributions with
MFPT ’ 10, with theoretical fits (solid black lines) from (5) and (7). The equilibrium polymers have average length 30, while the
active polymers have average length 600. (c) Reorganization time (defined in text) versus average length. Solid lines are theoretical fits
from (8) with slopes 2 and 1 for equilibrium and active polymers, respectively. (d) Reorganization time versus monomer diffusion
constant. Dashed lines show infinite-diffusion limits. Insets: time series showing average polymer number (left) and average polymer
length (right) at site 1 versus time after nucleation is switched off.
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Figure 2(c) shows the reorganization time for our simple
equilibrium and active polymers as functions of their av-
erage length, with fast diffusion. The reorganization time
scales �hLi2 for the equilibrium polymers and �hLi for
the active polymers. Hence, for a given average length, the
active polymers reorganize faster than the equilibrium
polymers, and, like for the MFPT, the difference widens
with increasing average length. The scaling exponents
differ from those for the MFPT because the reorganization
time is dominated by a few very long-lived long polymers,
whereas the MFPT is dominated by many short-lived short
polymers.

To understand the scaling relations in Fig. 2(c), we
estimate the reorganization time analytically as half the
‘‘average material age,’’ which we define as the average
age of the polymers in a steady-state snapshot of the
system, weighted by the length of each polymer:

�reorg � 1

2

R1
0 ageðLÞPðLÞLdL
R1
0 PðLÞLdL : (8)

This average material age captures the amount of time an
average monomer spends in an active polymer before it
turns over and well approximates the reorganization time.
Long polymers have more material than short polymers,
and so the average material age is weighted by the length of
each polymer. For our equilibrium polymers, ageðLÞ ¼
�L=a, which gives �

equil
reorg � 2D=a2 � hLi2. Indeed, since

the drift velocity a� 1=hLi for any equilibrium-polymer
model as discussed above, ageðLÞ � L2, and thus the equi-
librium reorganization time scales generally�hLi2. As for
the MFPT, this scaling is a fundamental property of equi-
librium polymers. To improve upon it requires active en-
ergy dissipation or some nonequilibrium process. For
example, our simple active polymers have ageðLÞ ¼ L=g,

and hence �activereorg � 4ða2�3aDþ3D2Þ
3a2ðD�aÞ , so that, for large hLiwith

jaj � 1, �activereorg � 4D=a2 � hLi.
Next, we consider the effects of slow monomer diffu-

sion. Figure 2(d) shows the reorganization time versus the
monomer transition rate kD between sites for equilibrium
and active polymers with the same average length (’ 90)
and fraction of polymerized material (75%). The fast-
diffusion limits, which are reached for kD ’ 1 (in units of
kþc), are shown with dashed lines. Strikingly, the active
polymers still reorganize much faster than the equilibrium
polymers even when slow diffusion limits the reorganiza-
tion time. To understand this effect, consider the
equilibrium-polymer dynamics after nucleation is switched
off at site 1: polymers there disassemble stochastically and,
since diffusion is slow, the released monomers typically
rejoin other polymers at the same site. Hence, the number
of polymers at site 1 drops rapidly while the average
polymer length grows [Fig. 2(d), insets]. Eventually, site
1 has only a few very long polymers. The equilibrium
polymers remain in this state for a very long time,

exchanging monomers with the free monomer pool at
site 1 while diffusion slowly drains the pool, until the
polymers finally disassemble. Therefore, the time needed
for slow diffusion to move half the monomers from site 1 to
site 2 is a good rough approximation for the equilibrium
reorganization time [18]. In contrast, active polymers do
not release monomers to the free monomer pool except by
disassembly. After the switch in nucleation, the number of
active polymers at site 1 drops while the average length
grows, similar to the equilibrium polymers. However, the
few long-lived active polymers at site 1 then quickly
accumulate and hydrolyze all the free monomers there,
and then all the polymers disassemble. The time to
hydrolyze all the monomers at site 1, plus the time for
half of those monomers to diffuse to site 2, is therefore a
good rough approximation for the active reorganization
time [18].
In summary, we find a fundamental difference between

active and equilibrium polymers: active polymers can
reach a fixed mean length with faster reorganization ki-
netics than equilibrium polymers. Very generally, we show
that equilibrium-polymer lifetimes scale linearly with
mean length. In contrast, active-polymer lifetimes can

scale sublinearly, for example, as hLi1=2 in a simple model
motivated by microtubules or as hLi0:7 in a more realistic
model [17,18]. Furthermore, in our example, the kinetic
advantage of active polymers persists even for slow mono-
mer diffusion. In a dynamic cellular environment, this
kinetic advantage may help justify active polymers’ greater
energy cost.
Our comparison of active and equilibrium polymers

predicts that one might find equilibrium polymers in bio-
logical contexts where polymer turnover is slow or struc-
tures rarely need to be reorganized. This may be the case
for eukaryotic intermediate filaments [24] or for the bacte-
rial homolog crescentin [25]. In addition, the existence of
proteins like formins and profilins that accelerate actin
polymerization suggests that kinetic regulation of active
polymers is important to cells. Finally, although the spe-
cific active model we consider is most closely based on
polymers like microtubules or ParM that exhibit dynamic
instability, our conclusions regarding accelerated kinetics
could also relate to actin networks for which branching
plays a role analogous to nucleation [26].
Our model neglects many complexities of real biopol-

ymers; clearly, active polymers accomplish more than
simply reaching a certain length with a certain lifetime.
We only suggest that fast reorganization kinetics might be
a general (and generally desirable) feature of the active-
polymer systems that are ubiquitous in biology.
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