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We report a novel approach to the question of whether and how the ground state can be achieved in
square artificial spin ices where frustration is incomplete. We identify two sources of randomness that
affect the approach to ground state: quenched disorder in the island response to fields and randomness in
the sequence of driving fields. Numerical simulations show that quenched disorder can lead to final states
with lower energy, and randomness in the sequence of driving fields always lowers the final energy
attained by the system. We use a network picture to understand these two effects: disorder in island
responses creates new dynamical pathways, and a random sequence of driving fields allows more

pathways to be followed.
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The ability to control artificial spin ice [1-15] and
related systems [16,17] has made them a useful testing
ground for many types of physics. For example, the effec-
tive temperature formalism used for granular materials can
be studied in the context of artificial spin ice [3,18,19]. The
submicron Ising-like magnetic islands of artificial spin ice
are arranged so the dipolar interisland interactions are
frustrated, leading to a complex energy landscape with
many states nearly degenerate. In square artificial spin
ices, the interactions within each vertex of the lattice of
islands are inequivalent, leading to a well-defined, twofold
degenerate ground state, as shown in Fig. 1(a). Large
domains of ground-state ordering have been observed in
samples that have undergone thermal annealing during
growth [7]. However, once grown, the islands are large
enough to be athermal and dynamics are driven entirely by
external fields.

One difference between athermal driven and thermal
dynamics is that an external driving field acts uniformly
on all islands, whereas thermally driven individual islands
may reverse stochastically. A consequence of having
global and deterministic driving—rather than localized
and random—is that dynamics are constrained and even
though the inequivalence of interactions lifts degeneracies
in the energy landscape, the field driven dynamics cannot
necessarily evolve the ice to a low energy state.
Experimentally, a sequence of fields applied to a saturated
configuration [shown in Fig. 1(b)] gives a final state with
only short range ground-state ordering [1,4,8,20].

Although the driving field is global, a spin’s behavior is
also determined by local factors: its interactions with other
spins and its (intrinsic) switching field. Disorder in these
affects the response to driving. Disorder has previously
been shown experimentally to be important for the re-
sponse of square artificial spin ice to fields [9] but until
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now, the mechanisms have been unclear. Here, we focus on
the simplest type of disorder, which is to allow the switch-
ing fields to vary in magnitude from island to island, as
would result from roughness in the islands. This variation
in switching fields does not modify the interactions, and
frustration and degeneracies are unaffected. Instead, it
modifies the way the system explores its energy landscape.
We study the effects of disorder using numerical simula-
tions which give full control over island properties, and by
mapping transitions onto a directed network which can be
studied using network theoretic tools [21,22]. This latter
approach provides a conceptual framework which can be
applied to other systems.

We first describe the effect of switching field disorder on
the final energy of the system, when a uniformly rotating
protocol is used. Then, we interpret the results with the
support of the network description, which is also the
natural framework to study changes in the field protocol.
Finally, we study field protocols with a random sequence of
field angles, and we show they allow the system to achieve
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FIG. 1 (color online). The array geometry studied, shown for
6 X 6 islands. (a) The ground-state configuration in which spins
are arranged in a microvortex configuration. The ground state is
twofold degenerate, with a global spin flip giving the other
ground-state configuration. (b) A saturated configuration, in
which all spins have a positive projection onto an axis. There
are four saturated configurations.
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lower-energy final states than can occur under rotating
protocols, in a way that is more robust against quenched
disorder.

In our simulations, the magnetic islands are treated as
dimensionless Ising spins § (§ = 1) that interact as point
dlpoles The energy of spin i is given by its Zeeman energy,
—h - S,, and the sum of dipolar interactions with all other
spins:

_ (i
Efil)p _hdl)p Si
1 S:-S; (S; - Fi)(S; - Fiy)
= 4 Z( 3 J 3 J : J ) (1)
THo 57N Ty Tij

As in previous works [2,6], spin i can flip if
I Si < —h{, 2

i+ hY and h(’) is the island’s intrinsic

where hl) = dip

switching field.

Evolution under an external field proceeds by ran-
domly selecting a spin satisfying criterion (2), flipping it,
then checking the switching condition again for all spins,
until no further flips are possible. We denote the transition

under a field /2 from initial state i to final state fbyi—f.
(More than one final state may be possible; alternatively f
may be the same state as i if no spins can flip.) The
transition i — f is the building block of the simulated
dynamics and the network picture, discussed below.

In the absence of disorder, all islands have the same

switching field. We implement disorder by drawing the K
from a Gaussian distribution characterized by standard
deviation o. We work in units where 1/(4mu,) and the
nearest-neighbor distance are set to unity, and the mean /..
value is 11.25.

In a perfect system with edge geometry as shown in
Fig. 1, a rotating field with constant amplitude can induce
nontrivial dynamics only in a narrow range of field ampli-
tudes, Ah = 2. This is shown for a 20 X 20 spin system as
blue circles in Fig. 2. As discussed in Ref. [6], smaller
fields are unable to flip spins and larger fields force the
magnetization to track the field. Dynamics always start at
array edges where spins have fewer neighbors. The mini-
mum of Eg,(h) at h = 10.5 is due to a very regular and
specific process of spin flips that “invade” from the array
edges.

Let us now consider the effect of switching field disor-
der, with o = 1.875. This disorder strength is consistent
with experimental data for the square lattices studied here
[23] and disconnected kagome ices [12,13]. Disorder al-
lows dynamics to start inside the array at sites where
“loose” spins with smaller switching fields are located.
Similar disorder effects have been seen in simulations of
vortices in nanopatterned superconductors [17]. The uni-
formly rotating field protocol now produces the curve
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FIG. 2 (color online). Disorder in island switching fields or the
sequence of applied fields allows the system to reach final states
with low energy. As indicated by the legend, symbols represent
rotating and random field protocols acting on perfect and dis-
ordered systems. Averages are made over 20 disorder realiza-
tions. Error bars represent 1 standard deviation.

Egp(h) given by inverted triangles in Fig. 2. The increase
in Ah indicates that the available configuration space is
enlarged: dynamical processes forbidden in the perfect
system—such as the flipping of isolated spins in the array
bulk—are allowed when disorder is present. However,
disorder can also destroy transitions. For example, the
orderly process of spin flips at 2 = 10.5 in the perfect
system cannot occur in the disordered system. This leads
to higher energy at these fields.

Up to now, the discussion has focussed on the dynamics
of spins in the array. However, an alternative viewpoint—
alluded to in the discussion of transitions i — f—is to see
the action of the applied field as ““transporting” the system
from one spin configuration state to another, in a path
through the space of all configurations. This picture can
be interpreted as a network, in which network nodes are
spin configurations and a directed link (i — f) exists if
applying some field to configuration i allows it to transition
to configuration f, according to the dynamics described
above. The advantage of this approach is that it allows us to
discuss dynamics in a way that is not restricted to a
particular field protocol. Related approaches to mapping
dynamics onto networks have proved fruitful in the study
of other geometrically frustrated systems [24,25] and the
random field Ising model [26-28].

We restrict our considerations to fields of strength
h = 11.5. Using a different field amplitude would give a
different network. In principle, the field can take any angle
in (0,27] but we consider only the discrete set of field
angles 0 = nw/128, n=1,2,...,256. As seen in the
Supplemental Material [29], this set of field angles can
be expected to give results close to the limit of continuous
6. For each configuration (node), transitions are calculated
at all field angles 0. A field protocol {0, #,, ...} corre-
sponds to a path on the network where at each step of the
path only a link corresponding to the angle 6; can be
followed.
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Since the number of configuration states increases ex-
ponentially with the size of the lattice, we consider a small,
feasible to analyze, 4 X 4 array, with 16 islands and 2'6
total configurations. We are able to obtain the exact net-
work representation of the dynamics of such a system, via
enumeration. Although the dynamics of the 4 X 4 system
are not exactly the same as those of the 20 X 20 system,
they are governed by the same basic rules, and results for
the smaller system are applicable to the larger one [29].
The networks are stored as adjacency matrices. A;; = 1 if
the transition i — f is allowed for some 6, A;; = 0 other-
wise. These are sparse matrices, with ~ 10° nonzero entries
in a 2'® X 2! matrix. Disorder is implemented in a similar
way to the simulations. However, because of the small
number of islands, the actual mean of the 4, values drawn
from the distribution is 11.25 + A, where A can be large
enough to affect the network properties. We subtract A
from each A, value to fix the mean at 11.25. Each disorder
realization gives a different network, but we find similar
network properties for disorder realizations with similar
standard deviations in #,.

Figure 3(a) shows the subnetwork of states reachable
from the +x saturated configuration in a perfect system.
All the links that exist for h = 11.5, 8 = nw/128 are
shown. The most striking feature of the subnetwork is
that it is very limited, containing only five nodes. The
saturated configuration (indicated by the large red node)
can evolve into one of two states, each of which can evolve
into a single state, giving two possible final states for the
system. Self-loops indicate that certain field angles are
unable to induce transitions. There are no ‘‘return”
paths—transitions are irreversible. Figure 3(b) shows the
subnetwork of states reachable from the same node, for a
typical disorder realization. The subnetwork contains 1814
nodes, 3 orders of magnitude more than the perfect system.
In this subnetwork, there are paths into the saturated con-
figuration, as well as out of it. Other realizations of disorder
give similar results, with the number of configurations
reachable from the saturated state ranging from 1758 to
12516 in a study of ten disorder realizations.

Turning to the network as a whole, we see that disorder
“rewires” the network significantly, increasing the total
number of links from 736720 to 949216. This is not
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FIG. 3 (color online). The subnetwork of states that can be
accessed from the +x saturated configuration for (a) a perfect
system (where the saturated configuration is the large red node)
and (b) a typical disordered system.

simply the addition of links: disorder removes 358 934
links from the perfect system, and creates 571430 links.
As already mentioned, one result of this rewiring is an
increase in the reversibility of dynamical pathways. This
can be described quantitatively using strongly connected
components (SCCs). In a directed network, if nodes A and
B are in the same SCC, there exists a path from A to B
and vice versa. The SCCs are determined using the algo-
rithm in Ref. [30], as implemented by the software package
MATHEMATICA. Figure 4(a) shows the distributions of SCC
sizes for perfect and disordered systems. In the perfect
system, the largest SCC contains 3 nodes and the saturated
configurations are in SCCs of size 1. In the disordered
system the largest SCC contains 1628 nodes, and includes
the saturated configurations. In terms of dynamics, this
means that in the disordered system there exists a sequence
of fields to take a saturated configuration to any one of
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FIG. 4 (color online). (a) The distributions of strongly con-
nected component sizes for the perfect (orange [light gray]
squares) and disordered (blue [dark gray] circles) systems.
(b) The in- and out-degree distributions for the perfect (orange
[light gray] squares) and disordered (blue [dark gray] circles)
systems. Insets: The in and out degrees of 1000 randomly chosen
configurations, in the disordered vs the perfect system. The red
line separates those nodes whose degree is increased from those
whose degree is decreased by disorder.
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1627 configurations, and also a sequence back to satura-
tion. Other disorder realizations give maximum SCC sizes
ranging from 606 to 12 386.

On the other hand, as seen in Fig. 4(b), the in- and out-
degree distributions are not affected much by disorder. In
both perfect and disordered systems, most nodes have a
low in degree, indicating that most configuration states can
only be reached from a small number of other states. The
peak in the out-degree distribution is at k., ~ 10, with
only a few nodes having very low out degree (stable
configurations) or very high out degree (unstable configu-
rations). As seen in the insets to Fig. 4(b), nodes that have
low (high) degree in the perfect system typically also have
low (high) degree in the disordered system. The degree is
increased more often than it is decreased because disorder
adds links to the system which are distributed among the
nodes.

While diversity in switching fields can open new links
between states, a link i — f is active only for certain
orientations of the field, 01’1‘} <60 < 60:X%. If the system
is in state i, but the applied field is not at an angle in the
active interval, the link is not ““operative.” In this way, the
field protocol is essential in determining dynamics.
Changing the protocol can dramatically modify the final
configurations attained.

We now show evidence of the importance of field pro-
tocol by simulating alternative protocols. The first ex-
ample, examined in Fig. 5, takes advantage of the way
disorder breaks symmetry between clockwise (CW) and
anticlockwise (ACW) rotations. In the perfect system, a
uniform rotation protocol gives the same result whether the
rotation is CW or ACW, because of reflection symmetry.
When disorder is introduced, the two senses of rotation are
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FIG. 5 (color online). For an undisordered system, clockwise
rotating fields, anticlockwise rotating fields, and a field protocol
that alternates sense of rotation every 2 cycles all give the same
final energy. When disorder is included, the clockwise and
anticlockwise rotating fields give the same results on average,
but the alternating field protocol leads to a lower final energy.
Symbols for each protocol and system are indicated in the
legend. Averages are made over 100 disorder realizations and
error bars represent 1 standard deviation.

no longer equivalent for any particular realization of
disorder, but symmetry is restored when we average over
disorder, as seen in Fig. 5. We can go a step further and
consider a protocol that samples both senses of rotation by
repeatedly making a number of rotations CW and then
ACW. In the perfect system, this alternating CW-ACW
protocol is equivalent to one with a single sense of rotation.
In a disordered system, it leads to lower-energy states with
greater ground-state ordering. The key point is that this
simple modification of the uniform protocol, and the pres-
ence of disorder, allow the system to avoid trapping by
higher-energy local minima.

The alternating CW-ACW protocol breaks the regular
sequence of applied fields to allow the system to traverse
regions of its phase space network inaccessible to the
uniform rotating protocol. Even more effective is a random
sequence of field orientations, corresponding to a random
walk on the network. The randomness introduced by this
protocol is extrinsic and controllable, unlike the random-
ness introduced by switching field disorder. Results for
random protocols are shown in Fig. 2. The diamonds
show results for a perfect ice, and the squares show results
for a disordered ice. In both cases the final energy is lower
than that reached by a uniformly rotating protocol in the
same system, and the fraction of vertices in a ground-state
configuration is higher (not shown). The large error bars
for h = 11.5 indicate the spread in final configurations
attained, corresponding to a variety of pathways taken on
the underlying dynamics network. Indeed, for & = 13.5,
the simulations do not attain a single final state, and the
averages of Fig. 2 are made over configurations attained
after the arbitrary time of 2000 field applications.

It is interesting to contrast these results for an athermal
ice to those presented recently for thermal ices. In Ref. [7],
experimentally observed large scale ordering was attrib-
uted to thermally driven processes occurring during
growth stages where the islands were small enough to
undergo thermal fluctuations. Thermal fluctuations are
often thought of as stochastic local fields. In the athermal
system considered here, they are replaced by either a
random sequence of global fields or frozen randomness
in the form of a distribution of switching fields. The uni-
fying principle for these two types of randomness is the
concept of links between configurations. The links fol-
lowed depend on both the switching fields and the driving
field. Diversity in either of these enables a wider explora-
tion of configuration space.

This ability to achieve long-range ground-state ordering
in the athermal system suggests a process similar in certain
respects to the ““order by disorder” proposed by Villain for
equilibrium systems [31]. In order by disorder phenomena,
disorder lifts degeneracies in frustrated systems and a
ground state, inaccessible in a pure system at zero tem-
perature can be achieved by introducing either quenched or
thermal disorder. This is an equilibrium phenomenon
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where fluctuations select a specific ground state from an
ensemble of degenerate states. By way of contrast, our
athermal nonequilibrium system without disorder has a
single ground state and strongly constrained dynamics.
While disorder does not make the ground state accessible
[23], it does remove constraints by adding links between
states. With the correct field protocol, these links can be
followed, allowing the system to relax into a state with a
high level of ground-state ordering.
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