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We analyze the occurrence of the Berezinskii-Kosterlitz-Thouless (BKT) transition in thin films of NbN

at various film thickness, by probing the effect of vortex fluctuations on the temperature dependence of the

superfluid density below TBKT and of the resistivity above TBKT. By direct comparison between the

experimental data and the theory, we show the crucial role played by the vortex-core energy in

determining the characteristic signatures of the BKT physics, and we estimate its dependence on the

disorder level. Our work provides a paradigmatic example of BKT physics in a quasi-two-dimensional

superconductor.
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Ever since the pioneering work of Berezinskii,
Kosterlitz, and Thouless (BKT) [1,2] predicting the occur-
rence of a phase transition without a continuously broken
symmetry in quasi-two-dimensional (2D) systems, a lot of
effort has been devoted to study its realization in real
materials [3]. Of particular interest have been 2D super-
conductors [4–11], where the superconducting (SC) tran-
sition is expected to belong to the BKT universality class.
In these systems, the BKT transition can be studied through
two different schemes. When approaching the transition
temperature TBKT from below, the superfluid density ns
(which is related to the magnetic penetration depth �) is
expected to go to zero discontinuously at the transition,
with a ‘‘universal’’ relation between nsðTBKTÞ and TBKT

itself [3,12]. Approaching the transition from above, one
can identify the BKT transition from SC fluctuations,
which leave their signature in the temperature dependence
of various quantities, such as resistivity or magnetization
[13]. In this second scheme, the information on the BKT
transition is encoded in the correlation length �ðTÞ, which
diverges exponentially at TBKT, in contrast to the power-
law dependence expected within Ginzburg-Landau (GL)
theory [14].

Many of the experimental investigations on 2D super-
conductors have relied on this second approach [7–10] to
identify the BKT transition through the temperature de-
pendence of resistivity �ðTÞ, using eventually the interpo-
lating formula proposed long ago by Halperin and Nelson
[13] to describe the crossover from BKT to ordinary GL
superconducting fluctuations. However, real superconduc-
tors have additional complicacies that can make such an
analysis more involved than what has been discussed in the
original theoretical approach. First, real systems always
have some degree of inhomogeneity, which tends to smear
the sharp signatures of BKT transition compared to the

clean case. As it has been recently shown through scanning
tunneling spectroscopy measurements [15,16], even when
disorder in the system is homogeneous, the system shows
an intrinsic tendency towards the formation of spatial
inhomogeneity in the SC state, which has to be taken
into account while analyzing the BKT transition. At a
more fundamental level, it has recently been proved
experimentally [6] that, for a real superconductor, the
vortex-core energy � can be very different from the value
predicted within the 2D XY model, which was originally
investigated by Kosterlitz and Thouless as the paradig-
matic case to study the BKT transition [2]. This can give
rise to a somehow different manifestation of the vortex
physics, even without the extreme of a change of the order
of the transition, as it has been proposed in the past [3,17].
Recently, the relevance of � for the BKT transition has
attracted a renewed theoretical interest in different con-
texts, ranging from the case of layered high-temperature
superconductors [18–20] to the one of superconducting
interfaces in artificial heterostructures [21].
All the above issues explain why, more than 30 years

after the prediction of the BKT transition in ultrathin films
of superconductors, its occurrence in real materials is still
controversial. The present Letter aims to give a paradig-
matic example of the emergence of the BKT transition in
thin films of NbN as the film thickness decreases. By a
systematic comparison between �ðTÞ and �ðTÞ, we show
that, to fully capture the ‘‘conventional’’ BKT behavior in a
real system, one must account for the correct value of � as
compared to the energy scale given by the superfluid stiff-
ness Js. The analysis carried out for films of different
thickness provides us also with an indirect measurement
of the dependence of the vortex-core energy on disorder,
showing that vortices become energetically more expen-
sive as disorder increases. Such a result can be related to
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the separation between the energy scales connected to the
SC gap, �, and Js as disorder increases, as we show by
computing the ratio �=Js within the Bogoliubov–
de Gennes solution of the attractive Hubbard model with
on-site disorder. Our results shed new light on the occur-
rence of the BKT transition on disordered films.

Our samples consist of epitaxial NbN films grown on
single-crystalline (100) oriented MgO substrates with
thickness d varying between 3–50 nm. The deposition
conditions were optimized to obtain the highest Tc

(16 K) for a 50 nm thick film. Details of sample preparation
and characterization have been reported elsewhere [6,22].
The absolute value of � as a function of temperature was
measured using a low-frequency (60 kHz) two-coil mutual
inductance technique [6] on 8 mm diameter films patterned
using a shadow mask. �ðTÞ was measured on the same
films through conventional four-probe technique after pat-
tering the films into 1 mm� 6 mm striplines using Ar-ion
milling.

The first clear signature of the presence of vortices in our
samples is provided by the deviations of ��2ðTÞ from the
BCS temperature dependence as d decreases. In particular,
we observe a sharp downturn of ��2ðTÞ, reminiscent of the
so-called universal jump of the superfluid density [12]. To
clarify the notation, we recall that, for a 2D superconduc-
tor, Js is defined as

Js ¼ @
2n2ds
4m

¼ @
2c2d

16�e2�2
; (1)

where n2ds is the effective 2D superfluid density. In a
conventional 3D superconductor, JsðTÞ goes to zero con-
tinuously at the SC temperature Tc. Instead, within BKT
theory, the SC transition is controlled by the vortex-
antivortex proliferation that becomes entropically favor-
able at the temperature scale TBKT defined self-consistently
by the relation

�JsðTBKTÞ
TBKT

¼ 2: (2)

In the above relation, the temperature dependence of JsðTÞ
is due not only to the existence of quasiparticle excitations
above the gap but also to the presence of bound vortex-
antivortex pairs below TBKT. The latter effect is usually
negligible when � is large, as is the case for superfluid
films [23]. In this case, one can safely estimate TBKT as the
temperature where the line 2T=� intersects the JBCSs ðTÞ
obtained by a BCS fit of the superfluid stiffness at lower
temperatures. However, as � decreases, the renormaliza-
tion of Js due to bound vortex pairs increases, and con-
sequently TBKT is further reduced with respect to Tc

[6,18]. To account for this effect, we fitted the temperature
dependence of ��2ðTÞ by integrating numerically the
renormalization-group (RG) equations of the BKT theory
[3,18] using the ratio �=Js as the only free parameter [6].
As an input parameter for JsðTÞ, we used the one obtained

by a BCS fit of the data [solid lines in Fig. 1(a)] at low
temperatures, where vortex excitations are suppressed,
which extrapolates to zero at the mean-field transition
temperature Tc. As one can see in Fig. 1(b), the transition
is still slightly rounded near TBKT, so that the sharp jump is
replaced by a rapid downturn at the intersection with
the universal 2T=� line. We attribute this effect to the
spatial inhomogeneity of the sample, which can be ac-
counted for by assuming a distribution of local JisðTÞ values
around the BCS one, and performing an average of the
��2ðTÞ associated to each patch [24]. For simplicity, we
assume that the occurrence probability wi of each local
Jis value is Gaussian, with relative width �. We then
rescale proportionally the local Ti

c and calculate the result-
ing Ti

BKT from the RG equations [6,19]. As shown in
Figs. 1(a) and 1(b), such a procedure leads to an excellent
fit of the experimental data in the whole temperature range.
The obtained values of the ratio �=Js (Table I) are rela-
tively small as compared to the standard expectation of the
XY model [25], where

�XY

Js
’ �2

2
’ 4:9: (3)

We recall that, within the BKT approach to the XY model,
the value of� is fixed by the cutoff at short length scales of
the energy of a vortex line,

E ¼ �Js

�
log

L

�0

þ �

�
; (4)

FIG. 1 (color online). (a) Temperature dependence of ��2ðTÞ
and �ðTÞ for four NbN films with different thickness. The solid
(black) lines and dashed (red) lines correspond to the BCS and
BKT fits of the ��2ðTÞ data, respectively. (b) An expanded view
of ��2ðTÞ close to TBKT; the intersection of the BCS curve with
the dotted line is where the BKT jump would be expected within
the XY model, when � is large. (c) Temperature variation of
R=RN . The dashed (red) lines show the theoretical fits to the
data, as described in the text.
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where L is the system size, �0 is the coherence length,
and � � �Js�. By mapping the (lattice) XY model into
the continuum Coulomb-gas problem [25], one obtains
� ’ �=2, so that � attains the value in Eq. (3). However,
in our samples, � is better estimated from the loss of
condensation energy within the vortex core (see discussion
below), leading to a smaller �=Js ratio and to the devia-
tions of the data from the BCS fit already before the
renormalized stiffness reaches the universal value 2T=�.

To further establish the validity of the values of �
obtained from the behavior of ��2ðTÞ below TBKT, we
now use the same set of parameters to analyze the �ðTÞ
above TBKT. In 2D, the contribution of SC fluctuations to
the conductivity can be encoded in the temperature depen-
dence of the SC correlation length, �� / �2ðTÞ. The func-
tional form of �ðTÞ depends on the character of the SC
fluctuations, being power-law for Gaussian GL fluctuations
[14] and exponential for BKT-like vortex fluctuations
[2,13]. Because of the proximity between TBKT and Tc

(Table I), we expect that most of the fluctuation regime
for the paraconductivity will be described by standard GL
SC fluctuations, while vortex fluctuations will be relevant
only between Tc and TBKT. To interpolate between the two
regimes, we resort then to the Halperin-Nelson formula
for � [13],

�

�0

¼ 2

A
sinh

bffiffi
t

p ; (5)

where t ¼ ðT � TBKTÞ=TBKT and A is a constant of order
one. b is the most relevant parameter to determine the
shape of the resistivity above the transition and is con-
nected [21] both to the relative distance tc between TBKT

and Tc, tc ¼ ðTc � TBKTÞ=TBKT, and to the value of �:

btheo � 4

�2

�

Js

ffiffiffiffi
tc

p
: (6)

The normalized resistance corresponding to the SC corre-
lation length (5) is given by

R

RN
¼ 1

1þ ð��=�NÞ �
1

1þ ð�=�0Þ2
; (7)

where RN is the normal-state resistance [that we take here
as RN � RðT ¼ 1:5TBKTÞ]. Finally, to account for sample
inhomogeneity, we map the spatial inhomogeneity of the
sample in a random-resistor-network problem, by associ-
ating to each patch of stiffness Jis a normalized resistance
�i ¼ Ri=RN obtained from Eq. (7) by using the corre-
sponding local values of Ti

c and Ti
BKT computed above.

The overall sample normalized resistance � ¼ R=RN is
then calculated in the so-called effective-medium-theory
approximation [26], where � is the solution of the self-
consistent equation

X
i

wið�� �iÞ
�þ �i

¼ 0 (8)

andwi is the occurrence probability of each resistor, i.e., of
the corresponding Jis value, as determined by the analysis
below TBKT. As it has been discussed in Ref. [27], the
effective-medium-theory approach turns out to be in ex-
cellent agreement with the exact numerical results for a
network of resistors undergoing a metal-superconductor
transition, even in the presence of SC fluctuations. We
can then employ Eq. (8) to compute R=RN of our samples,
by using the probability distribution of width � known
from the analysis of �ðTÞ and by treating A and b as free
parameters. The resulting fits are in excellent agreement
with the experimental data [Fig. 1(c)]. Moreover, consid-
ering that the interpolation formula (5) between the BKT
and GL fluctuation regime is necessarily an approximation,
the obtained values of b are in very good agreement with
the theoretical estimate (6) (Table I). Thus, our analysis
above Tc not only provides us with a remarkable example
of interpolation between the GL and BKT fluctuation
regimes but it also demonstrates the validity of the values
of � obtained from �ðTÞ. Finally, we would like to stress
that b cannot be used completely as a free parameter while
fitting the �ðTÞ. Attempting to fit the BKT fluctuation
regime at T � TBKT (as proposed in the literature [8,9])
results in unphysical b values with respect to relation (6).
Once the robustness of our estimate of � is established,

we discuss now the values reported in Table I and their
thickness dependence. We first notice that the values of �

TABLE I. Sheet resistance (Rs), magnetic penetration depth [�ðT ! 0Þ], TBKT, and BCS
transition temperature Tc, along with the best fit parameters (see text) obtained from the BKT
fits of ��2ðTÞ below TBKT and of RðTÞ above TBKT for NbN thin films of different thicknesses d.
The temperature Tc is obtained by the extrapolation of the BCS fit of ��2 well below TBKT.

d (nm) Rs (k�) �ð0Þ (nm) TBKT (K) Tc (K)

Fit of ��2ðTÞ Fit of RðTÞ
�=Js �=Js btheo A b

3 1.2 582 7.77 8.3 1.19 0.02 0.108 1.35 0.108

6 0.44 438 10.85 11.4 0.61 0.005 0.048 1.3 0.067

12 0.19 403 12.46 12.8 0.46 0.0015 0.027 1.21 0.039

18 0.1 383 � � � 13.37 � � � � � � � � � � � � � � �
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obtained by our fit are of the order of magnitude of the
standard expectation for a BCS superconductor. Indeed, in
this case, one usually [28] estimates the � as the loss in
condensation energy within a vortex core of the size of the
order of the coherence length �0,

� ¼ ��2
0	cond; (9)

where 	cond is the condensation-energy density. In the
clean case, Eq. (9) can be expressed in terms of Js by
means of the BCS relations for 	cond and �0. Indeed, since
	cond ¼ Nð0Þ�2=2, where Nð0Þ is the density of states at
the Fermi level and � is the BCS gap; �0 ¼ �BCS ¼
@vF=��, where vF is the Fermi velocity; and assuming
that ns ¼ n at T ¼ 0, where n ¼ 2Nð0Þv2

Fm=3, one has

�BCS ¼ �@2ns
4m

3

�2
¼ �Js

3

�2
’ 0:95Js; (10)

so that it is quite smaller than in the XY-model case (3).
While the exact determination of � depends on small
numerical factors that can slightly affect the above esti-
mate, the main ingredient that we should still account for is
the effect of disorder that can alter the relation between
	cond, �, and Js and explain the variations observed ex-
perimentally. To properly account for it, we computed
explicitly both � and Js within the attractive two-
dimensional Hubbard model with local disorder:

H¼�t
X
hiji�

ðcyi�cj�þH:c:Þ�jUjX
i

ni"ni# þ
X
i�

Vini�; (11)

which we solve in the mean field using the Bogoliubov–
de Gennes equations [29]. The first sum is over nearest-
neighbor pairs, and we work on a N ¼ Nx � Ny system,

with a local potential Vi randomly distributed between
0 � Vi � V0. Js is computed by the change in the
ground-state energy in the presence of a constant vector
potential [30], while� is computed by means of Eq. (9), by
determining both 	cond and � in the presence of disorder
[31] at doping n ¼ 0:87 and couplingU=t ¼ 1. The result-
ing value of �=Js at T ¼ 0 is reported in Fig. 2(a): It is of
the order of the BCS estimate and it shows a steady
increase as disorder increases, in agreement with the ex-
perimental results, shown in Fig. 2(b), where we take the
normal-state sheet resistance Rs as a measure of disorder as
the film thickness decreases. This behavior can be under-
stood as a consequence of the increasing separation with
disorder between the energy scales associated, respec-
tively, to the �, which controls 	cond, and Js, as it is shown
by the ratio �=Js that we report in the two panels of Fig. 2
for comparison. Notice that, even though we used a weaker
coupling U=t ¼ 1 as compared to other recent studies
[30,32], this is still a large coupling strength as compared
to our NbN samples, so that the numerical values of �=Js
are larger than experimental ones [33]. Nonetheless, our
approach already captures the experimental trend of �=Js

as a function of disorder and its correlation with the �=Js
behavior at large disorder.
In summary, we have shown that, to correctly identify

the typical signatures of the BKT transition in thin films of
NbN, we must properly account for � values smaller than
expected within the standard approach based on the XY
model [1,2]. We also observe steady increases of the ratio
�=Js as the film thickness decreases. This effect can be
understood within a model for disordered superconductors,
resulting from increasing separation between the energy
scales associated with � and Js. It would be interesting to
investigate if a similar effect could be at play also in other
systems, as disordered films of InOx [5] or high-
temperature cuprate superconductors, where a large �
value has been indirectly suggested by the analysis of the
superfluid density data [18].
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